
Applied Soft Computing 139 (2023) 110229

a

b

g
f
a
t
l
L
e
a
c
t
t
l
l
d

(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Convolutional neural network pruning based onmulti-objective
featuremap selection for image classification
Pengcheng Jiang a, Yu Xue a,∗, Ferrante Neri b
School of Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
NICE Group, Department of Computer Science, University of Surrey, Guildford, GU2 7XH, United Kingdom

a r t i c l e i n f o

Article history:
Received 23 November 2022
Received in revised form 15 February 2023
Accepted 14 March 2023
Available online 22 March 2023

Keywords:
Network pruning
Feature map selection
Convolutional neural networks
Multi-objective optimisation
Image classification

a b s t r a c t

Deep convolutional neural networks (CNNs) are widely used for image classification. Deep CNNs often
require a large memory and abundant computation resources, limiting their usability in embedded or
mobile devices. To overcome this limitation, several pruning methods have been proposed. However,
most of the existing methods focus on pruning parameters and cannot efficiently address the
computation costs of deep CNNs. Additionally, these methods ignore the connections between the
feature maps of different layers. This paper proposes a multi-objective pruning based on feature
map selection (MOP-FMS). Unlike previous studies, we use the number of floating point operations
(FLOPs) as a pruning objective in addition to the accuracy of the pruned network. First, we propose
an encoding method based on feature map selection with a compact and efficient search space.
Second, novel domain-specific crossover and mutation operators with reparation are designed to
generate new individuals and make them meet the constraint rules. Then, decoding and pruning
methods are proposed to prune networks based on the results of feature map selection. Finally, multi-
objective optimisation is used for evaluation and individual selection. Our method has been tested
with commonly used network structures. Numerical results demonstrate that the proposed method
achieves better results than other state-of-the-art methods in terms of pruning rate without decreasing
the accuracy rate to a high degree.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Deep convolutional neural networks (CNNs) demonstrate
reat ability in many computer vision tasks, such as image classi-
ication [1], object detection [2] and segmentation [3]. To achieve
high level of accuracy, many large CNNs have been designed

hat cost a huge amount of computation resources, seriously
imiting their applicability to many real-world problems [4,5].
arge and computationally expensive CNNs are not suitable for
mbedded or mobile devices, which have limited storage space
nd computing resources [6,7]. For example, one of the most
ommonly used network structures, VGG-16 [8], requires more
han 500 Mb of storage for parameters (i.e., weights) and more
han 15G floating point operations (FLOPs), leading to severe chal-
enges for small devices. At present, to overcome the hardware
imitations, small devices often send their calculations to external
evices on the cloud. Accordingly, this approach relies heavily

∗ Corresponding author.
E-mail addresses: pcjiang@nuist.edu.cn (P. Jiang), xueyu@nuist.edu.cn

Y. Xue), f.neri@surrey.ac.uk (F. Neri).
ttps://doi.org/10.1016/j.asoc.2023.110229
568-4946/© 2023 Elsevier B.V. All rights reserved.
on the internet network availability and negatively affects the
usability of image classification algorithms on small devices.

Recently, many researchers have attempted to solve this prob-
lem by designing smaller and more efficient CNNs. The set of
techniques associated with these studies is known as network
compression. Among the network compression techniques, the
most commonly used approaches are network pruning [9–11],
knowledge distillation [12], parameter quantisation [13] and neu-
ral architecture search (NAS) [14,15]. Knowledge distillation [16]
is used to design small networks and employs large models to
assist the training of these networks to make them competent
for certain complex tasks. The focus of this approach is still
on the need for experts to design small networks with good
generalisation performance.

Parameter quantisation [13] identifies redundancies and re-
duces the number of similar parameters. Typical approaches to
this include parameter clustering and binary networks. Parameter
clustering methods identify clusters of similar parameters and
replace the parameters’ values with their means. This effectively
reduces the number of parameters that need to be stored but
does not reduce the computation costs. Binary networks use ‘+1’

https://doi.org/10.1016/j.asoc.2023.110229
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110229&domain=pdf
mailto:pcjiang@nuist.edu.cn
mailto:xueyu@nuist.edu.cn
mailto:f.neri@surrey.ac.uk
https://doi.org/10.1016/j.asoc.2023.110229


P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

a
t
g

w
o
M
s
m
a
u
S
f
e

s
w
t
r
i
d
p
p
t
s
o
e
n

w
o
o
d
s
s
e
o
i
t
b

z
T
n
c
s
i
m
s

l
r
L
T
w
i
p
p
w
i
Z
a
a
m
t
p

O
l

o
p
e
p
i
c

b
a
a
(
t
t
o
F

t
T
m
s
t
a

nd ‘–1’ to represent all the network parameters, which reduces
he pressure of storage and calculation; however, due to the low
eneralisation ability, they can only be used on small datasets.
NAS [17,18] is an automatic design method for neural net-

orks. Due to its ability to automatically find the optimal model
n a variety of datasets, it is also applied to network compression.
ulti-objective optimisation algorithms can be used to search the
olution that meets the requirements of multiple objectives to si-
ultaneously meet the needs for task accuracy, computation cost
nd storage capacity. However, most previous studies have been
nable to make good use of the existing pre-trained networks.
ome studies also depend on having a well-designed search space
or searching a small network, which requires significant expert
xperience [19].
Network pruning, which is the focus of the present study,

eeks for and removes unnecessary parameters and sub-structures
ithin existing networks. Pruning methods can be divided into
wo categories: (1) those that remove unnecessary parameters to
educe the storage capacity [20] and (2) those that modify the
nner structure of the CNN to reduce both its size and FLOPs
uring calculation [21]. The removal of parameters makes the
arameters irregular, meaning this approach is called irregular
runing. Here, ‘0’ replaces the positions, which does not affect
he structure. Regular pruning refers to removing or modifying
tructures to make the network smaller. In comparison with
ther network compression methods, network pruning uses the
xisting structures and parameters better and can reduce the
eed for expert intervention.
Alternatively, modern approaches use dynamic neural net-

orks for pruning. At first, a shrinking learning method is used to
btain a large model that can take into account the performance
f substructures. Next, dynamic structures are implemented using
ynamic depth, dynamic width, dynamic convolutional kernel
ize, dynamic input size and dynamic routing [22,23]. This model
elects the most appropriate substructure to complete the infer-
nce based on the input and usage scenarios. In addition, the use
f dynamic parameters is a good strategy to complete dynamic
nference by adjusting the coefficients of parameters, features or
asks [24,25]. This approach relies on a unique training method
ut is highly convenient in practice.
Irregular pruning sets the parameters with a small norm to

ero, meaning networks with less storage can be obtained [20].
his method does not change the network structure and does
ot include the performance of an explicit action to reduce the
omputation on standard equipment. On the other hand, when
pecific professional hardware is available, it may lead to benefits
n terms of computational efficiency [26–28]. For example, some
ethods rely on specific devices to support the calculation of
parse tensors for sparse convolution calculation [29,30].
As an alternative to irregular pruning, a number of regu-

ar pruning methods have been proposed [31]. These methods
emove network structures instead of weights. For example,
i et al. [32] have proposed pruning filters with a smaller norm.
hey set the number of pruned filters for each layer manually,
hich depends on expert ability. Considering that the prun-

ng problem can be naturally formulated as an optimisation
roblem, several meta-heuristic methods can be used to find
runing solutions. For example, Zhang et al. [33] have pruned net-
orks using a genetic algorithm with integer encoding, employ-

ng the loss function and 0-norm as two objectives. Additionally,
hou et al. [34,35] have proposed a multi-objective evolutionary
pproach to perform pruning, using the loss function and 1-norm
s the two objectives. However, these approaches all focus too
uch on the norm of weights and ignore the importance of

he pruning targets, namely, the pruning rates of the FLOPs and

arameters. Some other more-standard pruning studies focus on

2

the removal of parameters, meaning they cannot achieve a high
pruning rate on FLOPs [32,36].

This paper proposes multi-objective pruning based on fea-
ture map selection (MOP-FMS), formulating the pruning as a
constrained combinatorial bi-objective optimisation problem and
proposing a domain-specific evolutionary algorithm to address
the pruning problem of CNNs. The main contributions of MOP-
FMS are summarised as follows:.

• Considering the relation between the feature maps from
different layers, the pruning problem is formulated as a bi-
objective optimisation problem with feature map selection,
and the accuracy rate and computation cost are simultane-
ously optimised.
• A novel feature map-based encoding method and a unique

decoding method are proposed for pruning common struc-
tures or networks with additive aggregation.
• Special initialisation, crossover and mutation operators are

designed with the quick reparation method to satisfy the
encoding constraints of this specific problem.

The remainder of this article is organised as follows. Section 2
presents related works on network compression. Section 3 out-
lines the implementation details of the proposed MOP-FMS. Sec-
tion 4 displays the experimental results reported in this article.
Section 5 provides a conclusion of the work.

2. Related work

2.1. Network pruning

Network pruning is the most direct method to compress exist-
ing neural networks [20] and is popular due to its simplicity and
effectiveness. Frankle et al. [37,38] have experimentally demon-
strated that while, in general, large networks are easier to train
directly, while small networks are more difficult in this regard,
small networks pruned from large networks can be easily trained
to high performance. A theoretical study reaching the same con-
clusion was performed by Malach et al. [39]. As an example of an
irregular pruning method, in [20], parameters characterised by an
L1 norm smaller than a prearranged threshold were set to zero.
ne limitation of this method is that the pruned network often
oses accuracy.

Let us here consider a neural network. The calculation of the
utput from an input vector can be seen as a set of successive
roducts of matrices by vectors, where each matrix represents
ach pair of neural network layers. The application of irregular
runing impacts the entries of these matrices without impact-
ng their sizes. More specifically, after pruning, these matrices
ontain multiple zeros, hence making them sparse.
Scattered zeros in a matrix do not always lead to significant

enefits in terms of computational cost. Conversely, if the zeros
re clustered on entire rows or columns, calculations can be easily
ccelerated using, for example, the basic linear algebra subroutine
BLAS) library [26]. Regular pruning can be viewed as a technique
hat poses to zero entire rows and columns in these matrices. This
ransformation logically corresponds to a reduction in the sizes
f the matrices and thus a reduction in the computation cost in
LOPs to calculate the output.
Fig. 1 represents examples of matrices of layer transitions in

wo scenarios: after irregular pruning and after regular pruning.
he pruned parameters are represented in grey, while the re-
aining ones are indicated by yellow. As a result, the use of
parse tensor calculations and special optimisations is required
o accelerate irregular pruning, which requires expert experience
nd poses new challenges for deployment.



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

i
a

H
p
b
i
c
u
c
m
c
m
H
r
c
t
G
d
t

S
b
n
i
D
s

a
m
p
o
t
A
t
a

Fig. 1. Parameter matrix after using pruning methods. (a) Irregular pruning: The resulting matrix contains scattered zeros, and its manipulation cannot be accelerated.
(b) Regular pruning: The resulting matrix has entire rows and columns removed, making it smaller than the original.
[
m
t
m
p
j
a
t
a

2

a
o
t
i
c
o
h
i
s
A
p

3

f
M
S

3

c
l
t
e
t
c
i
f
l
o
l

i
f
i
g

Fig. 2. Feature maps in two consecutive layers: the input feature maps on the
left hand side gets processed and generate output feature maps on the right
hand side. The output feature maps are divided in two categories: those that
have an additive relation with the input (Output = Conv(Input)+Input) indicated
n orange and those belonging to the common layers for which there is no
dditive relation (Output = Conv(Input)) in green.

Several regular pruning methods have recently been proposed.
u et al. [40] define the average percentage of zeros of an out-
ut to determine whether the corresponding parameters can
e removed. This method can minimise the impact on the ex-
sting network output but offers low performance in terms of
ompression rate. Liu et al. [21] suggest that the scaling factors
sed as affine transformation parameters in batch normalisation
an be used to guide the unnecessary channels. However, this
ethod requires the use of a special loss function with a spe-
ial scale factor to control the scale. These complications in the
odel pose challenges to the practical application of the method.
e et al. [41] use least absolute shrinkage and selection operator
egression to choose which channels to remove. Li et al. [32]
alculate the L1 norm of filter weights to determine which filters
o be pruned, while Wang et al. have improved this method in
REG-2 [42] using a growing regularisation scheme. He et al. [43]
esigned the soft filters pruning method, which uses the L2 norm
o determine which filters to be cleared at each epoch.

In recent studies, other forms of pruning have been explored.
ome of these include pattern pruning [44,45], layer pruning [46],
lock pruning [31], filter pruning [9], channel pruning [47] and
ode pruning [48]. Moreover, some other recent studies have
ntegrated the pruning problem into NAS [49–51]. For example,
ong et al. [52] propose the concept of transformable architecture
earch (TAS).
These approaches are similar to approaches that search within

n existing network using NAS methods [53]. Among the various
ethods, those based on mathematical programming have dis-
layed excellent performance. In these methods, unwanted parts
f the network are gradually removed. The main advantages of
hese approaches are their theoretical foundations and stability.
s examples, Lee et al. Li et al. and Zhang et al. decompose
he network pruning process into a convex optimisation problem
nd solve it using the alternating direction method of multipliers
3

10,54,55]. Another approach belonging to the category of exact
ethods is regularisation during back propagation, which aims

o make some of the weights unimportant [32,42,56]. Unlike
athematical methods, heuristic algorithms can determine the
arts that can be deleted through constant exploration and ad-
ustment of the search algorithm. The principle of using heuristic
lgorithms for pruning optimisation has low demands and is easy
o apply; however, it depends on the reliability of the search
lgorithm itself.

.2. Multi-objective evolutionary algorithms

When solving real-world problems, it is often the case that
problem will have multiple objectives that conflict with each
ther. In this case, satisfying only one objective cannot achieve
he desired result. Using a multi-objective evolutionary algorithm
s an effective method to solving these practical problems be-
ause it uses both an evolutionary algorithm and multi-objective
ptimisation. At present, multi-objective evolutionary algorithms
ave been fully researched and developed in many problems,
ncluding face recognition [57], image classification [58], feature
election [59,60], and network architecture search [61,62], etc.
dditionally, some studies have applied this idea to network
runing and made a number of achievements [33–35].

. Multi-objective feature map pruning

This section presents the proposed MOP-FMS. The overall
ramework is introduced in Section 3.5. The key components of
OP-FMS are individually presented and explained in
ections 3.1–3.4.

.1. Encoding strategy with constraint rules and initialisation

CNNs generally include four kinds of layers: convolution, fully
onnected, batch normalisation and max (or average) pooling
ayers. There are multiple convolutional kernels in each convolu-
ional layer. When an input is processed by a convolution layer,
ach convolutional kernel is applied to the image separately,
hus generating certain channels in the output, which are also
alled feature maps. These feature maps are then used as the
nput for the following convolution layers to generate additional
eature maps. This procedure is repeated for all the convolution
ayers [63]. Except for the convolution operator, none of the
perators change the number of feature maps in each convolution
ayer.

On the basis of the consideration that feature maps carry
mportant information for image classification tasks, this paper
ocuses on selecting important feature maps to prune CNNs. As
s shown in Fig. 2, all feature maps can be divided into two cate-
ories. In the first category, feature maps with additive relations



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229
Fig. 3. Example of the encoding strategy for a single individual.
t
r
n
t
t
i

3

t
T
a
c
t

Fig. 4. The feature maps behind concatenation depend on the feature maps from
different layers. The same colour indicates the same dependency.

are encoded together and marked in orange. The feature maps
from the residual blocks are calculated by adding the input and
convolution output, meaning the feature maps before and after
this layer are encoded as the same layer. In the other case, feature
maps from common layers are directly encoded, as represented
in green. All the feature maps across all the convolution layers of
the CNN are decoded in one of these ways.

Therefore, in the encoding, we set a binary vector with a length
equal to the number of feature maps that need to be encoded.
In this binary vector, ‘0’ indicates that the corresponding feature
map is removed, while ‘1’ indicates that the corresponding fea-
ture map is retained. Fig. 3 provides a graphical representation of
an individual. The main limitation of the proposed MOP-FMS is
that it is not generally applicable to all CNN architectures. MOP-
FMS can be applied only to networks with additive aggregation.
For the method to function, the feature maps produced by each
layer within the network must depend only on the feature maps
produced by the other identical layer. When the feature maps
of one layer depend on the feature maps of different layers, this
method will not be applicable due to the decoding from genes to
the feature map selection of each layer.

Taking the inception block as an example, Fig. 4 represents the
feature maps with concatenation. The dependencies among the
feature maps are represented as colours. In this case, the final
feature maps are stacked by concatenation, meaning they can be
divided into four parts. Each part depends on the feature maps
of previous layers with same colour. Therefore, obviously, each
feature map has a different length, meaning this case cannot be
encoded.

In the process of encoding, certain constraints must be satis-
fied. In the same convolutional layer, encoding all of the feature
4

maps with ‘0’ is not acceptable. If all the feature maps are dis-
carded, the subsequent layers would not be able to receive inputs.
Furthermore, we have empirically observed that solutions with
too few ‘1’ per layer are likely to display poor performance
in terms of accuracy. Conversely, solutions with too many ‘1’
produce very high FLOPs. This means that the number of ‘1’ in
each convolution layer must be within a pre-determined range.
Therefore, we set several constraints for the convolution layers.
Meanwhile, the search space is reduced.

To initialise the population, the following procedure has been
applied. The gene of each individual is first generated layer by
layer. It is then assumed that the i-th layer has ni feature maps
o be encoded, while the corresponding part of the gene is Gi. One
andom integer number ki between the minimum and maximum
umber of allowed ‘1’ is generated for the i-th layer. Then, in Gi,
he number of ‘1’ is ki, and the number of ‘0’ is ni − ki. Finally,
he gene of the individual is achieved by connecting all Gi where
ranges from 1 to l.

.2. Crossover, mutation and reparation operators

In this paper, domain-specific crossover and mutation opera-
ors are used. In particular, a mask crossover is employed [64].
wo parent individuals, P1 and P2, are randomly selected, and
mask vector of length N is also generated. This mask vector

ontains random numbers between 0 and 1. For each element of
he mask vector, if it is greater than a threshold α, then the genes
of the corresponding positions in the two parents are swapped
to generate two elements of offspring individuals Q1 and Q2. The
positions with random numbers less than or equal to α do not
change values. Fig. 5 gives an example of the crossover.

The mutation operation is then applied to each offspring indi-
vidual. Another mask vector of random numbers between 0 and
1 is generated. If the element of the mask vector is smaller than a
threshold β , then the corresponding gene is flipped from ‘0’ to ‘1’
or vice versa. Fig. 6 gives an example of the mutation operators.

The newly generated individuals then undergo a check to
satisfy the constraints, i.e., the feature maps in each layer are
scanned. If each layer does not contain enough ‘1’, some genes
with ‘0’ are randomly flipped to reach the constraint on the
minimum number with ‘1’. Conversely, if there are too many ‘1’
in a single layer, some of them are randomly selected and flipped
to ‘0’ to meet the constraint of having a maximum number of ‘1’.
Fig. 7 shows the reparation operators.

3.3. Decoding and pruning

Each individual is decoded and then the pre-trained network is
pruned prior to evaluation. In the decoding process, feature maps
of each layer are selected based on each individual. Then, based
on the selection of feature maps, the convolutional layers are
modified, and some of their kernels and channels are deleted. The



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229
Fig. 5. An example of crossover.
Fig. 6. An example of mutation.
Fig. 7. An example of reparation.
decoding process is the inverse of the encoding process. In this
process, the main step is to divide the gene into parts and restore
each part to the feature maps of each layer in the network. As is
shown in Fig. 8, the individual is divided into a number sections.
Then, the feature maps are marked with ‘deleted’ or ‘retained’
based on the corresponding gene parts.
5

To illustrate the pruning progress on the pre-trained networks
based on the feature map selection, one pair of pruning operators
is shown in Fig. 9 as resulting from the feature map selection of
one layer. The symbols F1, F2 and F3 indicate the feature maps.
The feature maps F2 are decoded to produce the selected feature
maps F ′ . This affects both previous and subsequent convolutional
2



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

l
F
a
F
E
o
r
k

t
t
p
s
p
r
a
o
T
t
e
o
i
a
k
m
i
o
f

F

i
o
i
b
s
l

t
t
d
i
H
s

t
s
p
p
T
d
s
s
s

M

c

Fig. 8. Decoding process.

layers. Filter pruning is performed on the previous convolutional
ayer. Based on the removed positions in F2, which are retained at
′

2, the corresponding kernels in the previous convolutional layer
re removed, and the other kernels are kept with their weights.
ilter pruning is then performed on the next convolutional layer.
ach kernel in the next convolutional layer has the same number
f channels as F2. The positions of deleted feature maps in F2
esult in the removal of the corresponding channels in each
ernel.
The illustrations in Figs. 8 and 9 provide an intuitive picture of

he main benefits of using the proposed encoding based on fea-
ure map selection. Direct encoding of the weights to perform the
runing would generate an extremely high-dimensional search
pace (with up to 108 variables), which would make the pruning
roblem extremely challenging. Although pruning methods di-
ectly encoding the positions or channels of filters can be used to
void this problem, their application may jeopardise the structure
f the network and pose an excessive emphasis on weights.
he decoding methods adopted by Zhou et al. [31,34] focus on
he feature maps but ignore the relations between different lay-
rs in residual blocks, meaning the method cannot be adopted
n ResNet. The proposed encoding method used in MOP-FMS
s highly compact and captures the functional interdependence
mong the convolution layers, with pruning channels and filters
ept together based on the selection of the retrained feature
aps, while the relations between the layers are also kept. One

dea underpinning the proposed method is that feature maps are
f great significance during image classification and can effect the

ollowing layers.

6

3.4. Evaluation and selection

The quality of each newly pruned CNN can be assessed by two
objectives. The first objective f1 is the classification error rate. The
second objective f2 is the computation cost expressed in FLOPs
according to the NVIDIA method [65]. For each convolutional
layer, the FLOPs are calculated by output size and kernel size as

FLOPs = Co ×Wo × Ho ×

(
Ck ×Wk × Hk

Gk
+ 1

)
(1)

where Co, Wo and Ho are the number of channels and width and
height of the output, respectively. Additionally, Ck, Wk, Hk and Gk
are number of channels, width, height and number of groups of
the kernel, respectively. For the fully connected layers, the FLOPs
are calculated by input size nin and output size nout as Eq. (2).

LOPs = nin × nout (2)

The fitness value f2 is the sum of the FLOPs at each layer,
ncluding the convolutional and fully-connected layers. At the end
f each individual evaluation, the fast elitist non-dominated sort-
ng selection method [66] is used to identify those individuals to
e retained in the next generation. First, the fast non-dominated
orting is used to divide the population into sets of dominance
evels.

Because non-dominant ordering is used, individuals belonging
o the same dominance set do not dominate each other. To build
he new generation, the best set of dominance (which is not
ominated by any other solutions in the population) is taken
nto consideration. This best set is called the non-dominated set.
owever, the algorithm needs to select a prearranged number of
olutions, which is equal to the population size Np.
If the non-dominated set does not contain enough solutions

o build a population, then other solutions are selected from the
et on the next level until the number is satisfied. When the
opulation contains more candidate solutions than the desired
opulation size, the crowded-comparison approach is applied.
his approach makes use of the crowding distance, that is, the
istance between solutions in the objective space. This criterion
elects the solutions that are as sparse as possible within their
et of dominance, thus preventing the selection of solutions with
imilar fitness values [66].
Looking at the method as a whole, it can be observed that

OP-FMS performs regular pruning by using feature maps to
Fig. 9. Illustration of the pruning process on the feature maps in one layer. Parts of F2 are selected for pruning, as marked by the dashed lines in F ′2 . This pruning
orresponds to a restructuring of the CNN based on pruning the convolution filters (in yellow) occurring through two mechanisms: channel pruning and filter pruning.



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

r
o

i
p
c
t
t
p
v

d
o
e

t

e
p
s

4

4

p
C
t
t
t
b
d

s
a
o

o
i
i

emove some areas of the network to maintain the relationships
f the feature maps in each layer.

Algorithm 1 Overall framework of MOP-FMS

Input: Number of generations G, population size Np, crossover
threshold α, mutation threshold β .

Output: The final population PopG.
1: Pop0 ← Initialise the population.
2: FPop← ∅.
3: for each x in Pop0 do
4: (f1; f2)← Evaluate the fitness of x (see Section 3.4).
5: Save f1 and f2 into FPop.
6: end for
7: for i = 1 to G do
8: QPopi ← Crossover and mutation with elements of Popi−1

as in Section 3.2.
9: for each x in QPopi do

10: (f1; f2)← Evaluate the fitness of x (see Section 3.4).
11: Save f1 and f2 into FPop.
12: end for
13: Pop′i ← Popi−1 ∪ QPopi
14: Apply fast non-dominated sorting, on the basis of f1 and f2

in FPop, to divide Pop′i into sets of dominance [66].
15: Apply the crowded-comparison approach to select from

Pop′i the Np solutions composing Popi [66].
16: Update FPop to match the selected candidate solutions in

Popi [66].
17: end for
18: return Final population PopG.

3.5. Overall framework

The overall framework of the proposed MOP-FMS is outlined
n Algorithm 1. As shown, MOP-FMS requires the input of four
arameters, total number of generations G, population size Np,
rossover threshold α and mutation threshold β . Firstly, the ini-
ial population Pop0 is composed of binary vectors x representing
he selected feature maps, which are the basis of the following
runing process. For all the candidate individuals x, the fitness
alues f1 and f2 are calculated and stored in FPop (lines 1–6).
At each generation, new individuals are generated by the

omain-specific crossover and mutation (lines 8) to build an
ffspring population QPop. The fitness values of the newly gen-
rated candidate solutions are calculated and recorded into FPop

(lines 9–12). New individuals are added to the population to form
the provisional population Pop′i . The records of fitness FPop and
he sets of dominance in Pop′i are updated using non-dominated
ordering (lines 13–14). The individuals undergoing the follow-
ing generation are selected (lines 15–16). The population Popi
volves for i = 1, 2, . . . ,G generations to find a non-dominated
opulation PopG, which is the final population for feature map
election (lines 7–17).

. Experiment and results analysis

.1. Experimental details

In this paper, four popular datasets were used for the ex-
eriments: MNIST [67], Fashion MNIST [68], CIFAR-10 [69] and
IFAR-100 [69]. MNIST and Fashion MNIST are two datasets en-
irely composed of grey images with a size of 28× 28. Each of the
wo datasets contained a training set with 60,000 images and a
est set with 10,000 images. The data from both these datasets
elonged to 10 categories. In addition, the images of the two
atasets were transformed into 32 × 32 images to match the
7

input size required by ConvNet-3 and LeNet-5. Both CIFAR-10 and
CIFAR-100 are datasets composed of colour images with a size of
32× 32. Each dataset contained a training set with 50,000 images
and a test set with 10,000 images. The images in CIFAR-10 were
divided into 10 categories, while those in CIFAR-100 were divided
into 100 categories.

To demonstrate the effectiveness of the proposed method,
some commonly used CNNs were selected for comparison. These
included:

ConvNet-3, LeNet-5 [70], VGG [8] and ResNet [4]. ConvNet-
3 was designed for this study by modifying LeNet-5. ConvNet-3
contains only three convolution layers and no fully connected
layers. ConvNet-3 and LeNet-5 were used for experiments on
MNIST and Fashion MNIST, while VGG and ResNet were used for
experiments on the CIFAR datasets.

For each pruning experiment, MOP-FMS was run for G = 50
generations, with a population size of Np = 20, a crossover
threshold of α = 0.5 and a mutation threshold of β = 0.05.
The minimum number of retained or deleted feature maps for
each layer was set to 1

16 of the original number, i.e., we impose
that in each binary solution at least 1

16 and at most 15
16 of the

total bits/genes are ‘1’. All individuals from the last generation of
the population were achieved for final training. After feature map
selection, each individual had an accuracy rate of 60%–80%. Then,
they were trained for 20 epochs using the output of the original
model and fine-tuned with small learning rates.

In all the experiments, one-fifth of the images were ran-
domly selected from the training set to evaluate the accuracy of
each sub-network generated by decoding each individual without
training. The remaining images from the training set were used
to train the pruned networks, which were decoded with final
individuals after the population iteration. The test set was used
by the trained networks to obtain the final results. Since the first
objective was unable to ensure that the best individual achieved
higher accuracy than the others after training, all the pruned
networks were decoded from individuals in the final population
need training.

4.2. Ablation study

To demonstrate the potential performance of the proposed
method, we used the multi-objective evolutionary computation
technology to prune LeNet-5 and ConvNet-3 on MNIST and Fash-
ion MNIST. Each network was pruned with different pruning rate
levels, which are given by the formulas

PRFLOPs =
nFLOPs

NFLOPs
(3)

PRparam =
nparam

Nparam
(4)

where PR is the pruning rate on FLOPs and parameters, n repre-
ents the number of saved FLOPs and parameters after pruning
nd N represents the number of FLOPs and parameters of the
riginal network.
Hence, we can refer to the pruning rate with respect to FLOPs

r parameters. It is worthwhile to mention that the pruning rate
n terms of FLOPs is the outcome of the optimisation process as
t is embedded in f2 (see Section 3.4). The pruning rate in terms
of parameters is indirectly controlled by the constraints when a
minimum and maximum number of ‘1’ is chosen.

Table 1 shows the results of LeNet-5 before pruning (baseline)
and after the application of MOP-FMS with an increasing pruning
rate. For each CNN, the values of accuracy, pruning rate in terms
of FLOPs and pruning rate in terms of parameters are shown.
The numerical results in Table 1 show that MOP-FMS was able
to efficiently prune the original CNN on the two small datasets



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

p
T
o
t
i
a
h
f
o

h
f
t
t
t
v
a

s
l
g
t

Fig. 10. The effect of the generations (G) on the detected non-dominated set.
t
a
g
G
c
s
r

Table 1
Experiments with LeNet-5 pruned by MOP-FMS. For MNIST, results with FLOPs
pruning rates of 10%, 40% and 70% were evenly selected from the final
population. For Fashion MNIST, the results with FLOPs pruning rates of 10%,
30% and 40% were evenly selected from the final population.
Dataset Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

MNIST

LeNet-5 (BL) 99.49% 0% 0%
LeNet-5 (10%) 99.50% 14.28% 0.69%
LeNet-5 (40%) 99.45% 42.84% 2.07%
LeNet-5 (70%) 99.28% 71.41% 3.45%

Fashion MNIST

LeNet-5 (BL) 91.54% 0% 0%
LeNet-5 (10%) 91.95% 14.28% 0.69%
LeNet-5 (30%) 91.63% 28.56% 1.38%
LeNet-5 (40%) 91.49% 42.84% 2.07%

‘BL’ indicates the baseline network, and it has the same meaning in the following
tables.

without greatly affecting the classification accuracy. It was also
observed that relatively small variations in the network structure
may yield a major reduction in the computation cost.

For example, for MNIST, a reduction of only 3.45% of the
arameters corresponds to a reduction of 71.41% for the FLOPs.
his finding has to be understood in relation to the architecture
f LeNet-5. Since the network has only one layer of feature maps
hat can be selected, the number of parameters to be pruned
s limited. On both the MNIST and Fashion MNIST datasets, the
ccuracy loss caused by pruning was within 0.2%. These results
ighlight the potential of MOP-FMS for real-time applications and
urther justifies our choice of linking the FLOPs as one of the
bjectives.
Table 2 displays the results of ConvNet-3. Since ConvNet-3

as three layers of feature maps that can be pruned without
ully connected layers, it can achieve higher pruning rates than
hose of LeNet-5 without an excessive loss of accuracy. Although
he accuracy of the benchmark structure is not very high due to
he absence of fully connected layers, MOP-FMS still performed
ery well considering that there was an accuracy loss of only
pproximately 0.3%.
Comparing Tables 1 and 2, it was found that MOP-FMS is more

uited to networks that have a greater proportion of convolution
ayers in their structure. In such CNNs, MOP-FMS can achieve a
reater pruning rate on the FLOPs and parameters. To display
he influence of the set parameters on the performance, we here
8

Table 2
Experiments with ConvNet-3 pruned by MOP-FMS. For MNIST, the results with
FLOPs pruning rates of 20%, 40%, 60% and 80% were evenly selected from the
final population. For Fashion MNIST, the results with FLOPs pruning rates of 10%,
20%, 40% and 60% are evenly selected from the final population.
Dataset Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

MNIST

ConvNet-3 (BL) 99.04% 0% 0%
ConvNet-3 (20%) 99.17% 16.68% 24.36%
ConvNet-3 (40%) 98.85% 37.36% 40.74%
ConvNet-3 (60%) 98.48% 55.33% 55.60%
ConvNet-3 (80%) 97.70% 78.74% 67.05%

Fashion MNIST

ConvNet-3 (BL) 89.66% 0% 0%
ConvNet-3 (10%) 89.74% 4.17% 6.09%
ConvNet-3 (20%) 89.16% 23.40% 17.89%
ConvNet-3 (40%) 88.27% 41.26% 28.94%
ConvNet-3 (60%) 87.13% 62.04% 49.13%

report an ablation study on the generation number (G), popula-
ion size (P) and threshold values (α and β). These experiments
re performed with VGG-16 on CIFAR-10. First, the number of
enerations was set to 25, 50 and 100. As shown in Fig. 10, when
= 50, the non-dominated set was slightly worse than that

orresponding to G = 100 but much better than that corre-
ponding to G = 25. Considering that G = 100 would require
uns twice as long in time than that for G = 50, we concluded
that setting G to 50 was a reasonable compromise. Then, the
size of the population P was extended to 60 and 100 to show
its influence on performance. In Fig. 11, green and yellow dots
do not approximate the Pareto front better than the blue ones.
Hence, an increase in population size cannot effectively improve
the coverage of the objective space. Finally, to demonstrate the
necessity of constraints, the experiments have been repeated
with and without constraints. From Fig. 12, it can be seen that,
although the distribution of yellow dots (without constraints) in
the objective space was not as large as that of blue dots (with
constraints) due to the initialisation, the search results of the
yellow dots were far worse than those of blue dots.

4.3. Pruning performances on VGG

This subsection compares the performance of MOP-FMS
against those of other pruning algorithms for pruning VGG-16 [8]
on CIFAR-10 and VGG-19 [8] on CIFAR-100.



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

f
0
[
1
o

o
p
c
o
m

p
T
u

Fig. 11. The effect of the population size on the detected non-dominated set.
Fig. 12. The effect of the proposed constraints on the detected non-dominated set.
For CIFAR-10, the following pruning algorithms were used
or comparison: Variational CNN Pruning [71], Greg-1 [32], GAL-
.1 [36], GAL-0.05 [36], SSS [72], HRank [73], KGEA [35], ThiNet
74] and ABCPruner [75]. These algorithms were pruned on VGG-
6 [8] for the classification of CIFAR-10. Table 3 shows the results
f the comparison on CIFAR-10.
The experimental results in Table 3 show that pruning rates

f over 60% can achieve an accuracy superior to that of all other
runing algorithms with VGG-16 as the baseline. Additionally,
ompared with other algorithms, MOP-FMS was also obtain to
btain the highest pruning rate, achieving reductions of approxi-
ately 90% in terms of both FLOPs and the number of parameters.
To depict the superiority of MOP-FMS compared with its com-

etitors, the results of all the comparison algorithms shown in
able 3 are plotted in Fig. 13 along with the results of the last pop-
lation of the pruned networks PG after fine-turning. The search

time for VGG-16 on CIFAR-10 was about 60 min, and the training
time for individuals of the last population was within 80 min. It
can be seen from the figure that the solutions detected by MOP-
FMS dominated all the solutions produced by the 12 competitors
except for KGEA [35]. Only one solution in PG was dominated by
KGEA, but it was very close to its performance. However, in KGEA,
Zhou et al. set the size of population to 30, while the number
of generations for VGG is 200, which is about six times more
computational budget than that used for MOP-FMS.
9

Table 3
Experiments on CIFAR-10 with VGG-16. The results with a FLOPs pruning rate
of 60%, 70%, 80% and 90% were evenly selected from the final population.
Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

VGG-16 (BL) [8] 93.83% 0.00% 0.00%
FPC (50%) [9] 94.09% 53.92% 91.24%
FPC (60%) [9] 94.08% 65.63% 95.18%
Variational CNN Pruning [71] 93.18% 39.44% 73.37%
Greg-1 (70%) [32] 93.52% 70.36% 65.33%
Greg-1 (30%) [32] 93.40% 34.34% 63.32%
GAL-0.1 [36] 90.73% 45.21% 81.86%
GAL-0.05 [36] 93.03% 39.60% 77.17%
SSS [72] 93.02% 41.63% 73.30%
HRank (50%) [73] 93.43% 53.59% 82.95%
HRank (60%) [73] 92.34% 65.38% 82.07%
KGEA [35] 92.83% 78.88% 61.17%
ThiNet [74] 93.47% 70.13% 58.86%
ABCPruner [75] 93.35% 66.54% 52.73%

MOP-FMS (60%) 94.36% 64.60% 62.18%
MOP-FMS (70%) 93.93% 73.80% 72.25%
MOP-FMS (80%) 91.51% 82.45% 80.50%
MOP-FMS (90%) 87.24% 90.50% 89.08%

The experimental results of pruning VGG-19 on CIFAR-100 are
shown in Table 4. The search time for VGG-19 on CIFAR-100



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

l
g
p
e
g
i
t

a
o
T
a
t

4

t
1

Fig. 13. Pareto frontier of last generation population compared with existing methods.
Table 4
Experiments on CIFAR-100 with VGG-19. The results with a FLOPs pruning rate
of 50%, 60% and 70% were evenly selected from the final population.
Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

VGG-19 (BL) [8] 73.34% 0% 0%
Kron-OBD (70%) [76]
(Extended based on [77])

72.29% 77.24% 37.90%

Kron-OBD (90%) [76]
(Extended based on [77])

60.70% 97.56% 82.55%

Kron-OBS (70%) [76]
(Extended based on [78])

72.12% 74.18% 36.59%

Kron-OBS (90%) [76]
(Extended based on [78])

60.66% 97.48% 83.57%

EigenDamage (70%) [76] 72.90% 76.64% 37.40%
EigenDamage (90%) [76] 65.18% 97.31% 88.63%
MOP-FMS (50%) 72.92% 52.59% 49.18%
MOP-FMS (60%) 70.12% 66.90% 64.86%
MOP-FMS (70%) 65.68% 69.23% 65.76%

was about 80 min, while the training time for the individuals
of the last population was within 130 min. In this case, MOP-
FMS was compared against Kron-OBS [76], Kron-OBD [76] and
EigenDamage [76].

The results show that MOP-FMS can achieve the best accuracy
evel with pruning rates of around 50%. Although MOP-FMS is
enerally competitive with other methods, it does not seem to
roduce high accuracy for higher levels of pruning rates. Consid-
ring that the effect of the baseline on CIFAR100 was not very
ood, it can be guessed that the feature map in VGG19 is more
mportant for the final classification basis, thus making it difficult
o improve the accuracy.

To show a qualitative representation of the convergence of the
lgorithm, Fig. 14 displays one example of the performance trend
f both the objectives (Accuracy and FLOPS) over the generations.
he oscillations in both trends were due to the fact that the
lgorithm applied a multi-objective approach and did not attempt
o optimise the functions separately.

.4. Pruning performances on ResNet

To show the pruning ability of MOP-FMS on complex struc-
ures, MOP-FMS was used to prune ResNet-56 [4] and ResNet-
10 [4]. The comparison results are presented in Tables 5 and 6,
10
Table 5
Experiments on CIFAR-10 with ResNet-56. The results with FLOPs pruning rates
of 60%, 70% and 80% were evenly selected from the final population.
Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

ResNet-56 (BL) [4] 93.78% 0.00% 0.00%
FPC (30%) [9] 94.01% 35.72% 65.88%
FPC (50%) [9] 93.39% 49.74% 78.82%
NISP [79] 93.01% 36.13% 42.35%
Greg-1 [32] 93.06% 28.33% 14.12%
GAL-0.6 [36] 92.98% 38.26% 11.76%
HRank (30%) [73] 93.52% 30.05% 16.47%
HRank (50%) [73] 93.17% 50.55% 42.35%
ESNB [31] 93.75% 53.17% 56.47%

MOP-FMS (60%) 93.98% 64.78% 68.92%
MOP-FMS (70%) 93.47% 69.91% 72.28%
MOP-FMS (80%) 93.01% 76.26% 76.90%

Table 6
Experiments on CIFAR-10 with ResNet-110. The results with FLOPs pruning rates
of 60%, 70% and 80% were evenly selected from the final population.
Method Accuracy (%) Pruning rate (%)

FLOPs Parameters

ResNet-110 (BL) [4] 94.43% 0.00% 0.00%
FPC (50%) [9] 94.54% 48.20% 67.05%
FPC (60%) [9] 93.83% 64.54% 83.24%
Greg-1 [32] 93.30% 39.28% 32.95%
GAL-0.5 [36] 92.55% 49.00% 45.09%
HRank (50%) [73] 94.23% 41.75% 39.88%
HRank (60%) [73] 93.36% 58.59% 59.54%

MOP-FMS (60%) 94.47% 67.32% 69.38%
MOP-FMS (70%) 94.01% 71.35% 72.10%
MOP-FMS (80%) 93.28% 83.25% 86.14%

with FPC [9], NISP [79], Greg-1 [32], GAL-0.5 [36] and HRank [73]
used for comparison.

The proposed MOP-FMS pruned a large number of network
structures on each benchmark network without greatly affecting
the accuracy and while still greatly reducing the computational
cost. During the search time, ResNet-56 originally costed about
25 min, and ResNet-110 costed about 50 min. Afterwards, indi-
viduals in the last population were trained, making the entire
time for ResNet-56 within 40 min and that for ResNet-56 within
90 min.



P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229

R
p
p
f
p
e
F
o
b

5

a
p
o
h
i
p
n
A
w

e
r
t
e
t

m
t
i
t
i
a
p
r
a
w
p

r
m

Fig. 14. Convergence trend of the two objectives for VGG-19 on CIFAR-10.
It is worthwhile to comment on the correlation between
esNet structure and MOP-FMS performance. The logic of the
roposed MOP-FMS appears to be very well-suited to efficiently
runing the ResNet structure. Due to the fact that the same
eature maps within the ResNet structure were used in multiple
arts, the MOP-FMS can prune large portions of the network by
liminating only a few feature maps. As shown in Tables 5 and 6,
PC [9] achieved the best accuracy. For MOP-FMS, for a 60% level
f the pruned network, the accuracy was similar to that of FPC,
ut the pruning rate was much higher.

. Conclusions and future work

This paper proposes a novel pruning algorithm for CNNs with
dditive aggregation. Unlike other pruning algorithms, the pro-
osed method encodes the pruning task on CNNs as the selection
f feature maps. This representation of the solutions enables a
ighly compact and efficient representation of the network prun-
ng. The pruning task is modelled as a bi-objective optimisation
roblem where the two objectives are the accuracy of the pruned
etwork and the computation cost, which is expressed in FLOPs.
n ad-hoc evolutionary multi-objective optimisation algorithm
as also designed to perform the pruning.
We chose four popular CNNs as the baselines and conducted

xperiments on four datasets. In total, 14 modern pruning algo-
ithms were used for comparison. The results demonstrated that
he proposed method was able to achieve excellent performance,
specially for the ResNet architecture, because the encoding of
he feature map selection is well suited to this structure.

Based on our interpretation, since the deletion of a feature
ap may result in the pruning of multiple sections of a ResNet,

he feature map encoding carries a large amount of important
nformation about the network functioning. The design of the
wo competing objective functions guarantees that the prun-
ng does not excessively deteriorate the performance and poses
n emphasis on the computation cost. The latter is highly im-
ortant, especially for modern applications that might require
eal-time image classification despite the fact that the algorithms
re embedded in devices with limited hardware. Future work
ill investigate methods to generalise the applicability of the
roposed concept to all CNN architectures.
Future developments of this research will move in two di-

ections. The first is the study and implementation of pruning
ethods based on feature map representation for large networks
11
such as TinyImageNet and ImageNet. This line of research will
also include studies on the scalability of the method. The sec-
ond is the adaptation of our approach to lightweight network
structures, such as MobileNet and ShuffleNet, whose pruning pro-
cesses may differ from those applicable in the case of standard-
size networks. In addition, the relationship between the feature
maps of different layers requires further exploration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was partially supported by the National Natural
Science Foundation of China (61876089, 61876185, 61902281),
the Natural Science Foundation of Jiangsu Province, China (BK201
41005) and the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (14KJB520025).

References

[1] Y. Chen, X. Wen, Y. Zhang, W. Shi, CCPrune: Collaborative channel pruning
for learning compact convolutional networks, Neurocomputing 451 (2021)
35–45.

[2] Z. Lu, K. Deb, V.N. Boddeti, MUXConv: Information multiplexing in convo-
lutional neural networks, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 12041–12050.

[3] L. Zhang, X. Hu, Y. Zhou, G. Zhou, S. Duan, Memristive DeepLab: A
hardware friendly deep CNN for semantic segmentation, Neurocomputing
451 (2021) 181–191.

[4] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-
ResNet and the impact of residual connections on learning, in: Proceedings
of the AAAI Conference on Artificial Intelligence, 2017, pp. 4278–4284.

[6] E. Mininno, F. Neri, F. Cupertino, D. Naso, Compact differential evolution,
IEEE Trans. Evol. Comput. 15 (1) (2011) 32–54.

[7] F. Neri, E. Mininno, Memetic compact differential evolution for cartesian
robot control, IEEE Comput. Intell. Mag. 5 (2) (2010) 54–65.

[8] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, in: International Conference on Learning
Representations, 2015.

[9] Y. Chen, X. Wen, Y. Zhang, Q. He, FPC: Filter pruning via the contribution of
output feature map for deep convolutional neural networks acceleration,
Knowl.-Based Syst. 238 (2022) 107876.

http://refhub.elsevier.com/S1568-4946(23)00247-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb9


P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229
[10] G. Lee, K. Lee, DNN compression by ADMM-based joint pruning,
Knowl.-Based Syst. 239 (2022) 107988.

[11] Y. Liu, M.K. Ng, Deep neural network compression by Tucker de-
composition with nonlinear response, Knowl.-Based Syst. 241 (2022)
108171.

[12] T. Gao, Y. Zhou, S. Duan, X. Hu, Memristive KDG-BNN: Memristive bi-
nary neural networks trained via knowledge distillation and generative
adversarial networks, Knowl.-Based Syst. 249 (2022) 108962.

[13] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, X.-s. Hua,
Quantization Networks, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7300–7308.

[14] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, V.N. Boddeti, Neural
architecture transfer, IEEE Trans. Pattern Anal. Mach. Intell. 43 (9) (2021)
2971–2989.

[15] Y. Xue, Y. Wang, J. Liang, A. Slowik, A self-adaptive mutation neural
architecture search algorithm based on blocks, IEEE Comput. Intell. Mag.
16 (3) (2021) 67–78.

[16] P. Chen, S. Liu, H. Zhao, J. Jia, Distilling knowledge via knowledge review,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 5006–5015.

[17] Y. Sun, B. Xue, M. Zhang, G.G. Yen, J. Lv, Automatically designing CNN
architectures using the genetic algorithm for image classification, IEEE
Trans. Cybern. 50 (9) (2020) 3840–3854.

[18] Y. Sun, B. Xue, M. Zhang, G.G. Yen, Evolving deep convolutional neural
networks for image classification, IEEE Trans. Evol. Comput. 24 (2) (2019)
394–407.

[19] Y. Xue, J. Qin, Partial connection based on channel attention for differ-
entiable neural architecture search, IEEE Trans. Ind. Inform. (2022) http:
//dx.doi.org/10.1109/TII.2022.3184700.

[20] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections
for efficient neural network, in: Advances in Neural Information Processing
Systems, vol. 28, 2015.

[21] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient
convolutional networks through network slimming, in: Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 2755–2763.

[22] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-All: Train one network
and specialize it for efficient deployment, in: International Conference on
Learning Representations, 2019.

[23] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, Y. Wang, Dynamic neural
networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 44 (11) (2022)
7436–7456.

[24] B. Yang, G. Bender, Q.V. Le, J. Ngiam, CondConv: Conditionally pa-
rameterized convolutions for efficient inference, in: Advances in Neural
Information Processing Systems, vol. 32, 2019.

[25] N. Ma, X. Zhang, J. Huang, J. Sun, Weightnet: Revisiting the design space
of weight networks, in: European Conference on Computer Vision, Cham,
2020, pp. 776–792.

[26] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE:
Efficient inference engine on compressed deep neural network, in: Pro-
ceedings of the 43rd International Symposium on Computer Architecture,
2016, pp. 243–254.

[27] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, B. Ren, PatDNN:
Achieving real-time DNN execution on mobile devices with pattern-based
weight pruning, in: Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 907–922.

[28] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, P. Sadayappan, Adaptive
sparse tiling for sparse matrix multiplication, in: Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, 2019,
pp. 300–314.

[29] E. Elsen, M. Dukhan, T. Gale, K. Simonyan, Fast sparse ConvNets, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 14617–14626.

[30] A. Zhou, Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun, H. Li, Learning
N:M fine-grained structured sparse neural networks from scratch, in:
International Conference on Learning Representations, 2021.

[31] Y. Zhou, G.G. Yen, Z. Yi, Evolutionary shallowing deep neural networks at
block levels, IEEE Trans. Neural Netw. Learn. Syst. (2021) http://dx.doi.org/
10.1109/TNNLS.2021.3059529.

[32] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for effi-
cient ConvNets, in: International Conference on Learning Representations,
2017.

[33] Y. Zhang, Y. Zhen, Z. He, G.G. Yen, Improvement of efficiency in evolu-
tionary pruning, in: Proceedings of the International Joint Conference on
Neural Networks, 2021, pp. 1–8.

[34] Y. Zhou, G.G. Yen, Z. Yi, Evolutionary compression of deep neural networks
for biomedical image segmentation, IEEE Trans. Neural Netw. Learn. Syst.

31 (8) (2020) 2916–2929.

12
[35] Y. Zhou, G.G. Yen, Z. Yi, A knee-guided evolutionary algorithm for
compressing deep neural networks, IEEE Trans. Cybern. 51 (3) (2021)
1626–1638.

[36] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann, Towards
optimal structured CNN pruning via generative adversarial learning, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2785–2794.

[37] J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable
neural networks, in: International Conference on Learning Representations,
2019.

[38] J. Frankle, G. Dziugaite, D.M. Roy, M. Carbin, Linear mode connectivity
and the lottery ticket hypothesis, in: International Conference on Machine
Learning, 2020, pp. 3259–3269.

[39] E. Malach, G. Yehudai, S. Shalev-Shwartz, O. Shamir, Proving the lottery
ticket hypothesis: Pruning is all you need, in: International Conference on
Machine Learning, 2020.

[40] H. Hu, R. Peng, Y.-W. Tai, C.-K. Tang, Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures, 2016, arXiv
preprint arXiv:1607.03250.

[41] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep
neural networks, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1398–1406.

[42] H. Wang, C. Qin, Y. Zhang, Y. Fu, Neural pruning via growing regularization,
in: International Conference on Learning Representations, 2021.

[43] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating
deep convolutional neural networks, in: Proceedings of the International
Joint Conference on Artificial Intelligence, 2018, pp. 2234–2240.

[44] M. Lin, Y. Zhang, Y. Li, B. Chen, F. Chao, M. Wang, S. Li, Y. Tian, R. Ji, 1xN
Pattern for Pruning Convolutional Neural Networks, IEEE Trans. Pattern
Anal. Mach. Intell. (2022) 1–11.

[45] K. Nakagawa, S. Suzumura, M. Karasuyama, K. Tsuda, I. Takeuchi, Safe
Pattern Pruning: An Efficient Approach for Predictive Pattern Mining,
in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 2016,
pp. 1785–1794.

[46] P. Xu, J. Cao, F. Shang, W. Sun, P. Li, Layer Pruning via Fusible Residual
Convolutional Block for Deep Neural Networks, 2020, arXiv preprint arXiv:
2011.14356.

[47] K. Yamamoto, K. Maeno, PCAS: Pruning channels with attention statistics
for deep network compression, in: Proceedings of the British Machine
Vision Conference (BMVC), 2019, pp. 106.1–106.13.

[48] T. He, Y. Fan, Y. Qian, T. Tan, K. Yu, Reshaping deep neural network for
fast decoding by node-pruning, in: 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 245–249.

[49] H. He, J. Liu, Z. Pan, J. Cai, J. Zhang, D. Tao, B. Zhuang, Pruning Self-
attentions into Convolutional Layers in Single Path, 2021, arXiv preprint
arXiv:2111.11802.

[50] Y. Li, P. Zhao, G. Yuan, X. Lin, Y. Wang, X. Chen, Pruning-as-search:
Efficient neural architecture search via channel pruning and structural
reparameterization, 2022, arXiv preprint arXiv:2206.01198.

[51] H. Mousavi, M. Loni, M. Alibeigi, M. Daneshtalab, PR-DARTS: Pruning-based
differentiable architecture search, 2022, arXiv preprint arXiv:2207.06968.

[52] X. Dong, Y. Yang, Network pruning via transformable architecture search,
in: Advances in Neural Information Processing Systems vol. 32, 2019,
pp. 760–771.

[53] J. Wei, G. Zhu, Z. Fan, J. Liu, Y. Rong, J. Mo, W. Li, X. Chen, Genetic U-
Net: Automatically designed deep networks for retinal vessel segmentation
using a genetic algorithm, IEEE Trans. Med. Imaging 41 (2) (2022) 292–307.

[54] H. Li, N. Liu, X. Ma, S. Lin, S. Ye, T. Zhang, X. Lin, W. Xu, Y. Wang, ADMM-
based weight pruning for real-time deep learning acceleration on mobile
devices, in: Proceedings of the 2019 on Great Lakes Symposium on VLSI,
New York, NY, USA, 2019, pp. 501–506.

[55] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, Y. Wang, A systematic
DNN weight pruning framework using alternating direction method of
multipliers, in: Proceedings of the European Conference on Computer
Vision, 2018, pp. 191–207.

[56] M. Cacciola, A. Frangioni, X. Li, A. Lodi, Deep neural networks pruning
via the structured perspective regularization, 2022, arXiv preprint arXiv:
2206.14056.

[57] Y. Bi, B. Xue, M. Zhang, Multi-objective genetic programming for feature
learning in face recognition, Appl. Soft Comput. 103 (2021) 107152.

[58] Y. Bi, B. Xue, P. Mesejo, S. Cagnoni, M. Zhang, A survey on evolutionary
computation for computer vision and image analysis: Past, present, and
future trends, IEEE Trans. Evol. Comput. (2022) 1.

[59] B. Xue, M. Zhang, W.N. Browne, X. Yao, A survey on evolutionary com-
putation approaches to feature selection, IEEE Trans. Evol. Comput. 20 (4)

(2015) 606–626.

http://refhub.elsevier.com/S1568-4946(23)00247-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb18
http://dx.doi.org/10.1109/TII.2022.3184700
http://dx.doi.org/10.1109/TII.2022.3184700
http://dx.doi.org/10.1109/TII.2022.3184700
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb30
http://dx.doi.org/10.1109/TNNLS.2021.3059529
http://dx.doi.org/10.1109/TNNLS.2021.3059529
http://dx.doi.org/10.1109/TNNLS.2021.3059529
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb39
http://arxiv.org/abs/1607.03250
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb45
http://arxiv.org/abs/2011.14356
http://arxiv.org/abs/2011.14356
http://arxiv.org/abs/2011.14356
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb48
http://arxiv.org/abs/2111.11802
http://arxiv.org/abs/2206.01198
http://arxiv.org/abs/2207.06968
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb52
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb52
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb52
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb52
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb52
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb55
http://arxiv.org/abs/2206.14056
http://arxiv.org/abs/2206.14056
http://arxiv.org/abs/2206.14056
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb59


P. Jiang, Y. Xue and F. Neri Applied Soft Computing 139 (2023) 110229
[60] P. Wang, B. Xue, J. Liang, M. Zhang, Differential evolution based feature
selection: A niching-based multi-objective approach, IEEE Trans. Evol.
Comput. (2022) 1–4.

[61] Y. Xue, P. Jiang, F. Neri, J. Liang, A multi-objective evolutionary approach
based on Graph-in-Graph for neural architecture search of convolutional
neural networks, Int. J. Neural Syst. 31 (09) (2021) 2150035.

[62] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. Yen, A survey on evolutionary neural
architecture search, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–21.

[63] W. Rawat, Z. Wang, Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review, Neural Comput. 29 (9) (2017)
2352–2449.

[64] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Second
Edition, in: Natural Computing Series, Springer, 2015.

[65] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolu-
tional neural networks for resource efficient inference, in: International
Conference on Learning Representations, 2017.

[66] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002)
182–197.

[67] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris
Burges, URL http://yann.lecun.com/exdb/mnist/.

[68] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:
1708.07747.

[69] The CIFAR-10 and CIFAR-100 datasets, URL http://www.cs.toronto.edu/
~kriz/cifar.html.

[70] Y. LeCun, et al., LeNet-5, convolutional neural networks, URL: http://yann.
lecun. com/exdb/lenet, 20 (5) 14.
13
[71] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, Q. Tian, Variational convolu-
tional neural network pruning, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 2775–2784.

[72] Z. Huang, N. Wang, Data-driven sparse structure selection for deep neural
networks, in: Proceedings of the European Conference on Computer Vision,
2018, pp. 317–334.

[73] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, L. Shao, HRank:
Filter pruning using high-rank feature map, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 1526–1535.

[74] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, W. Lin, ThiNet: Pruning
CNN filters for a thinner net, IEEE Trans. Pattern Anal. Mach. Intell. 41 (10)
(2019) 2525–2538.

[75] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, Y. Tian, Channel pruning via
automatic structure search, in: Proceedings of the International Joint
Conference on Artificial Intelligence, 2021.

[76] C. Wang, R. Grosse, S. Fidler, G. Zhang, EigenDamage: Structured pruning
in the Kronecker-Factored eigenbasis, in: International Conference on
Machine Learning, vol. 97, 2019, pp. 6566–6575.

[77] Y. LeCun, J. Denker, S. Solla, Optimal brain damage, in: Advances in Neural
Information Processing Systems, vol. 2, 1989.

[78] B. Hassibi, D. Stork, Second order derivatives for network pruning: Optimal
brain surgeon, in: Advances in Neural Information Processing Systems, vol.
5, 1992.

[79] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V.I. Morariu, X. Han, M. Gao, C.-Y.
Lin, L.S. Davis, NISP: Pruning networks using neuron importance score
propagation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194–9203.

http://refhub.elsevier.com/S1568-4946(23)00247-8/sb60
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb60
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb60
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb60
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb60
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb61
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb61
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb61
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb61
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb61
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb63
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb63
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb63
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb63
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb63
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb66
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb66
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb66
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb66
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb66
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb71
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb71
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb71
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb71
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb71
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb72
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb72
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb72
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb72
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb72
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb73
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb74
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb74
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb74
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb74
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb74
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb75
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb75
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb75
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb75
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb75
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb76
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb76
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb76
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb76
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb76
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb77
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb77
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb77
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb78
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb78
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb78
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb78
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb78
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79
http://refhub.elsevier.com/S1568-4946(23)00247-8/sb79

	Convolutional neural network pruning based on multi-objective feature map selection for image classification
	Introduction
	Related Work
	Network Pruning
	Multi-objective Evolutionary Algorithms

	Multi-Objective Feature Map Pruning
	Encoding Strategy with Constraint Rules and Initialisation
	Crossover, Mutation and Reparation Operators
	Decoding and Pruning
	Evaluation and Selection
	Overall Framework

	Experiment and Results Analysis
	Experimental Details
	Ablation Study
	Pruning Performances on VGG
	Pruning Performances on ResNet

	Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References


