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Abstract—Evolutionary neural architecture search (ENAS)
automates the design of high-performing neural networks but
is often hindered by the high computational cost of evaluating
individual architectures. Surrogate models mitigate this issue by
predicting performance, yet their accuracy depends on the quality
of training data and their ability to utilise insights from real eval-
uations. This paper presents homogeneous encoding-based ENAS
(HENAS), a novel method addressing these challenges through
two key innovations: homogeneous architecture augmentation
and confidence-based prediction. Through homogeneous architec-
ture augmentation, HENAS exploits redundant encodings in the
MobileNetV3 search space to generate multiple representations
of the same architecture, enhancing the surrogate model’s train-
ing data without additional cost. Confidence-based prediction
introduces a mechanism to identify architectures with uncertain
performance estimates, prioritising them for evaluation. Inte-
grated into an evolutionary framework, these techniques improve
search efficiency and exploration. Experiments on CIFAR-10,
CIFAR-100, and ImageNet show that HENAS achieves state-
of-the-art performance with reduced computational expense.
Ablation studies confirm the contributions of its core components,
highlighting the value of redundancy exploitation and uncertainty
management in surrogate-assisted ENAS.

Index Terms—Evolutionary computation, neural architecture
search, surrogate model, data augmentation, confidence level.

I. INTRODUCTION

The (semi-)automated design of neural networks, framed
as an optimisation problem—commonly referred to as neural
architecture search (NAS)—has recently gained popularity as a
strategy for creating machine learning models. This is particu-
larly evident in convolutional neural networks (CNNs) for im-
age classification. Among NAS approaches, a notable category
treats architecture search as a global optimisation problem,
leveraging evolutionary computation (EC)-based methods [1],
[2]. This category, known as evolutionary neural architecture
search (ENAS) [3], [4], applies principles of evolutionary
algorithms to explore the search space.

ENAS distinguishes itself by employing population-based
methods that iteratively manipulate and evaluate candidate
architectures. However, the need to calculate the objective
function for each individual in the population makes this
process computationally expensive. To address this limitation,
contemporary ENAS methods utilise proxy-based evaluation
strategies, which, as reported in [5] broadly belong to the
following categories.

• Indirect proxy methods use techniques such as weight
inheritance, where knowledge from previously trained
architectures is reused to accelerate real evaluations.

• Surrogate models (direct proxy methods), on the other
hand, employ machine learning models to predict ar-
chitecture performance, entirely bypassing the need for
computationally expensive real evaluations.

By integrating these proxy-based approaches, ENAS signif-
icantly reduces computational costs while maintaining effec-
tiveness in searching for optimal neural architectures.

Current surrogate evaluation methods rely heavily on train-
ing data, and their performance is strongly influenced by
data quantity. To enhance accuracy without increasing evalu-
ation costs, some studies propose methods to expand training
datasets. For example, Luo et al. [6] use semi-supervised
learning to generate unlabelled architecture samples and as-
sign pseudo-labels using the surrogate model. However, this
approach depends heavily on the reliability of pseudo-labels.
An alternative strategy involves analysing encoding to iden-
tify redundancies within the search space, enabling dataset
expansion. Liu et al. [7] employ adjacency matrices to encode
architectures, using isomorphic matrices to represent identical
networks, thereby generating additional training data at no
extra cost. Xie et al. [8] further extend this method by
applying isomorphic generation to entire adjacency matrices.
Despite its potential, this approach has primarily been explored
in graph-based search spaces and requires further study in
broader search spaces. Additionally, most research focuses
on improving the surrogate model or training phase, often979-8-3315-3431-8/25/$31.00 ©2025 IEEE
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overlooking the prediction phase. Jiang et al. [9] demon-
strate that using isomorphic representations during prediction
significantly enhances surrogate model performance. Thus,
exploring improvements to the prediction phase and applying
these techniques to diverse search spaces remain promising
research directions.

Although surrogate-assisted ENAS methods effectively
search for promising architectures, the surrogate model still
underutilises real evaluations during the evolutionary process.
Additionally, due to high computational costs in NAS, the
number of evaluations typically does not exceed 500 [7],
[9], [10]. In this context, selecting suitable architectures for
training to expand the surrogate dataset is crucial, as it
directly impacts the surrogate model’s performance and the
final architectures discovered.

In this paper, we propose a novel ENAS algorithm, termed
Homogeneous Architecture Augmentation and Confidence
Prediction (HENAS). We begin by analysing redundant rep-
resentations in the MobileNetV3 search space and introduce
a homogeneous architecture augmentation method that
increases the amount of real data for surrogate model training,
without incurring additional evaluation costs. Furthermore, we
propose a confidence-based prediction method to identify ar-
chitectures with high uncertainty in the population, leveraging
real evaluations of these architectures to significantly improve
the surrogate model’s performance. Finally, we integrate these
two innovations into an evolutionary framework to enhance
the search for superior architectures. The key contributions of
this work are as follows:

1) We design a homogeneous architecture augmentation
method that generates multiple homogeneous representa-
tions of the same architecture using redundant encodings
in the search space, enriching the surrogate dataset and
improving model performance without adding computa-
tional overhead.

2) We develop a confidence prediction method that es-
timates the accuracy of pending architectures by pre-
dicting their performance based on homogeneous repre-
sentations, thus providing the surrogate evaluation and
confidence level for each architecture.

3) By combining homogeneous architecture augmentation
with confidence prediction, we refine the traditional evo-
lutionary algorithm framework, prioritising architectures
with low confidence for real evaluation, which further
enhances surrogate model training.

The remainder of this paper is organised as follows. Section
II briefly discusses the computational challenges of NAS and
reviews methods from the literature that address these issues.
Section III introduces the proposed HENAS framework. Sec-
tion IV-B presents the experiments conducted in this study.
Finally, Section V concludes the paper and outlines directions
for future work.

II. RELATED WORK

A. Computational cost of neural architecture search

Traditional NAS methods are computationally expensive,
requiring extensive training of numerous candidate archi-
tectures to evaluate performance [11]. This high cost has
sparked significant efforts in both academia and industry to
find more efficient alternatives. Reinforcement learning (RL)-
based NAS, while popular, often suffers from poor search
efficiency, resulting in long search times and limiting practical
use [12]. Gradient-based methods, especially those incorporat-
ing attention mechanisms to guide architecture selection, have
gained attention. However, they can get trapped in suboptimal
solutions, often favouring architectures with imbalanced or
sparse parameters [13], requiring further adjustments in the
search strategy. In contrast, EC-based methods stand out
by excelling in discrete optimization, offering robust global
exploration capabilities and leveraging historical data, making
them particularly well-suited for NAS [14].

B. Proxy-based ENAS

In NAS, as mentioned above, two commonly employed
proxy-based methods are direct proxy (surrogate models) and
indirect proxy, both of which can complement each other.
Direct proxy involves directly predicting the fitness of an
individual. For instance, Liu et al. utilised random forests
to predict the accuracy of architectures [7], while Wang et
al. used support vector machines (SVM) to determine the
superiority relationship between candidate architectures [4].
Other studies have expanded on the concept of superiority
relationships, developing architectural scores derived from
accuracy rankings [10], [15], [16]. These methods leverage
machine learning models to reduce the need for extensive real
evaluations, thus conserving resources.

In contrast, indirect proxy methods aim to reduce the
training time of architectures, using the classification accuracy
of under-trained models as an approximate fitness value.
Techniques such as weight inheritance and low-fidelity training
are commonly used. For example, Chu et al. employed a
supernet with shared weights, allowing each individual to
inherit weights from corresponding modules, thus shortening
the training time [17]. Both direct and indirect proxy methods
can be combined for greater efficiency. Lu et al. demonstrated
this by using an ensemble of traditional machine learning
models to predict classification accuracy, where the highest-
performing individual inherited weights from the supernet and
underwent rapid evaluation [18]. Similarly, Xue et al. utilised
SVM to establish relationships between paired architectures,
and through non-dominated sorting based on predicted re-
lationships and computational complexity, accelerated real
evaluations by using weight inheritance for certain individ-
uals [19].

III. METHODOLOGY: HENAS
This section presents a detailed description of the proposed

homogeneous encoding-based evolutionary neural architecture
search (HENAS) method. We begin by outlining the overall
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Algorithm 1: Overall framework of HENAS
Input: The number of initial archive N , the number of

generations maxGen, the generation for
starting updating the surrogate model Sstart,
the interval between two updates Sstep and the
total counts of updates St, the number of
individuals adding to archive at each time K,
the number of architecture augmentation for
each individual numAug, the number of
individuals which is added to low-confidence
list numConf .

1 D ← { }; C ← { }; G← 0; Scount ← 0;
2 Sample N candidate architectures from the search

space and get the initial population P ;
3 Conduct real evaluations for P , and add the records to

the archive D;
4 model← Train the surrogate model with D;
5 P.fitness← Evaluate P with surrogate model;
6 do
7 Q← Generate offspring population using P ;
8 Q.fitness,Q.conf ← Evaluate Q with surrogate

model;
9 Select the individuals with higher fitness than the

average with sorted confidence values;
10 Add the numConf individuals with worst

confidence into the C;
11 if (G− Sstart)%Sstep = 0 and Scount < St then
12 H ← Select K individuals from P and Q with

best fitness;
13 Select the numConf individuals with worst

confidence from C and move them into H;
14 Conduct real evaluations for H , and add the

records to the archive D;
15 model← Update the surrogate model with D;
16 Predict and update the confidence values for C;
17 Scount ← Scount + 1;
18 end
19 P ← Environmental selection with fitness of P

and Q;
20 G← G+ 1;
21 while G < maxGen;
22 Get the best individual Indi as the final architecture;
23 return Indi.

framework of the algorithm in Section III-A. Next, Sec-
tion III-B discusses the search space and the encoding strategy
used. In Section III-C, we introduce the homogeneous archi-
tecture augmentation method. Finally, Section III-D presents
the confidence prediction method.

A. Overall framework

The framework of the proposed method is detailed in
Algorithm 1. Initially, two empty sets are created: the archive
dataset D for training the surrogate model and the list C

Add into 

archive

Sample from 

search space

Surrogate 

model

Training

Surrogate 

prediction

Generation 

offspring

Initial

population

Environmental 

selection

Add into low-

confidence list

Collect 

candidates for 

real evalution

Confidence

Fitness

Confidence

Fitness

Fig. 1. Framework of the Homogeneous Encoding-based Evolutionary Neural
Architecture Search (HENAS). The framework incorporates a periodic update
of the surrogate model, indicated by the dashed line. This process includes
both the evaluation of the offspring generation and the selection of individuals
based on their fitness and confidence levels, as well as the real evaluations
that periodically expand the training data for the surrogate model.

containing individuals with low confidence (line 1). At the
beginning, N individuals are randomly sampled from the
search space, evaluated through real experiments, and recorded
in the archive D (lines 2-3). The surrogate model is then
trained using the data in D (line 4) and applied throughout the
evolutionary process (lines 5 and 8). During the evolutionary
phase, the parent population P generates offspring population
Q through uniform crossover and mutation (line 7). The
surrogate model evaluates their fitness, which is used for
environmental selection. The overall framework is illustrated
in Figure 1.

Each time the offspring generation P is evaluated, the
surrogate model not only computes the fitness value but also
estimates the confidence level of its predictions (line 8).
Individuals whose fitness values exceed the average fitness
value of the offspring generation are then ranked based on their
confidence levels. The individuals with the lowest confidence
levels are added to the list C (lines 9-10).

The surrogate model is periodically updated throughout the
process (lines 11-18). Using the fitness values of both the
parent generation P and the offspring generation Q, the top
K individuals, along with the numConf individuals with
the lowest confidence levels from list C, are selected for real
evaluation and added to the archive D (lines 12-14). Once
evaluated, the corresponding individuals are removed from
C. Following this, the surrogate model is retrained using the
updated archive D, and the model is then used to re-predict
the fitness and update the confidence levels of each individual
in C (lines 15-16).

B. Search space & encoding strategy

The search space of MobileNetV3, a lightweight backbone
network, is employed in this study. A macroscopic represen-
tation of the architecture is shown in Figure 2. Each candidate
network consists of 5 blocks, with each block containing up

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on June 26,2025 at 01:11:49 UTC from IEEE Xplore.  Restrictions apply. 



192 196 200 … 252 256

0 1 2 … 15 16

Options for s

Encoding

192 196 200 … 252 256

0 1 2 … 15 16

Options for s

Encoding

2 3 4

0 1 2

Options for d

Encoding

2 3 4

0 1 2

Options for d

Encoding

3 5 7

0 1 2

Options for k

Encoding

3 5 7

0 1 2

Options for k

Encoding

3 4 6

0 1 2

Options for e

Encoding

3 4 6

0 1 2

Options for e

Encoding

Block (depth: d)

Layer 1

Layer 2

Layer 3 (optional)

Layer 4 (optional)

Block (depth: d)

Layer 1

Layer 2

Layer 3 (optional)

Layer 4 (optional)

Resize & Crop (image size: s)

Resize Crop

ss

Resize & Crop (image size: s)

Resize Crop

s

1×1 Conv

Depth-wise Conv

1×1 Conv

Layer (kernel size: k, expand_ratio: e)

1×1 Conv

Depth-wise Conv

1×1 Conv

Layer (kernel size: k, expand_ratio: e)

4 — 0 0 1 1 1 2 0 0 1 — 2 0 1 1 0 1 2 2 0 — 1 1 1 2 0 0 2 2 0— … …4 — 0 0 1 1 1 2 0 0 1 — 2 0 1 1 0 1 2 2 0 — 1 1 1 2 0 0 2 2 0— … …

k=3

e=4

Image

Size

=208

k=5

e=4

k=7

e=3

k=3

e=4

k=3

e=4

k=5

e=3

k=5

e=6

k=7

e=3

k=5

e=4

k=7

e=3

k=3

e=6

k=7

e=3
…

k=3

e=4

Image

Size

=208

k=5

e=4

k=7

e=3

k=3

e=4

k=3

e=4

k=5

e=3

k=5

e=6

k=7

e=3

k=5

e=4

k=7

e=3

k=3

e=6

k=7

e=3
…

a) Overall 

architecture

b) Encoding bits

c) Example 

encoding

X

P
re

-p
ro

ce
ss

in
g

Im
ag

e

T
ra

n
si

ti
o

n

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

B
lo

ck
 5

O
u

tp
u
t

R
es

iz
e 

&
 C

ro
p

In
p

u
t

P
re

-p
ro

ce
ss

in
g

Im
ag

e

T
ra

n
si

ti
o

n

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

B
lo

ck
 5

O
u

tp
u
t

R
es

iz
e 

&
 C

ro
p

In
p

u
t

Fig. 2. The MobileNetV3 search space. a) The overall architecture. It contains the image processing, pre-processing layer, transition layer and five blocks.
The blue parts is searched by the proposed methods. b) Options in encoding bits and their meanings. c) A sample coding with gray areas indicating unused
layers.

to four possible layers. The structure of each layer follows an
inverted residual design, which includes:

1) A 1x1 convolution operation for preprocessing.
2) A depth-wise separable convolution.
3) A final 1x1 convolution operation as a linear layer.
Each layer has two configurable parameters: the expansion

ratio e and the kernel size k, which control the internal
convolution kernels. The expansion ratio e can be selected
from the set {3, 4, 6}, while the kernel size k can be chosen
from {3, 5, 7}. Additionally, the depth of each block, denoted
by d, is also a tunable parameter, with d ∈ {2, 3, 4}. A depth
of 3 means that one of the layers is skipped, and therefore,
the last expansion ratio and kernel size in the block’s encoding
are not used. When searching for the architecture, the input
image size s, which influences the classification accuracy of
the network, is also considered. The input size s is represented
as one of 17 possible resolutions, ranging from 192 to 256 with
an interval of 4. In total, the encoding of the search space
requires 1 + 5 + 5 × 4 × 2 = 46 bits of integer encoding.
These bits represent the various architectural configurations,
with integer values replacing continuous values.

C. Homogeneous architecture augmentation

The encoding strategy for MobileNetV3 reveals that the
absence of layers in any block leads to redundant encodings.
Furthermore, each additional missing layer exponentially in-
creases the number of distinct representations for the same

architecture, resulting in a vast number of redundant encodings
in the search space. These redundancies can be leveraged to
expand the surrogate model’s training dataset without requiring
additional real evaluations.

To address this, we propose a homogeneous architecture
augmentation method that exploits the redundant encodings
in the search space to generate augmented architectures.
This method enhances the dataset for training the surrogate
model without incurring extra real evaluation costs. For each
candidate architecture, the 5 bits representing the number
of layers in each block are examined to identify any block
that is not fully populated with layers. If a block contains
fewer than the maximum number of layers, the last invalid
encodings for that block are randomly modified to other
values, thereby generating a homogeneous representation of
the architecture. This process is repeated for each block,
producing a new architecture that is substantially different
in terms of its encoding, yet still valid within the search
space. Both the newly generated architecture and its original
label are then added to the surrogate dataset, contributing
additional training data for the surrogate model. Figure 3
illustrates an example of a network with missing layers and
the corresponding homogeneous encoding generated through
this augmentation process.

D. Surrogate training & confidence-based prediction
Due to the introduction of the architecture augmentation

method, adjustments are required in the surrogate model’s
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Augmentation

Fig. 3. An example of homogeneous architecture augmentation. The figure
demonstrates how the missing layers in a block (shown as invalid encodings)
are randomly modified to create new, valid architecture representations. This
process generates a new network configuration that is significantly different
from the original architecture in its encoding, but retains the same overall
structure. The augmented architecture is then added to the surrogate dataset
to improve training without requiring additional real evaluations.

training process. Additionally, a confidence-based prediction
approach is proposed to further enhance the model’s perfor-
mance.

Training Phase: In the training phase of the surrogate
model, we begin by collecting the encoding representations
of all individuals that have been evaluated in real experiments
from the architecture archive. These evaluations form the sur-
rogate training dataset, denoted as Dtrain. For each individual
in the dataset, we apply the method described in Section III-B
to generate numAug homogeneous encoding representations.
These augmented encodings are then added to Dtrain, enrich-
ing the dataset without additional real evaluations.

To ensure the surrogate model performs optimally, we
convert each encoding in Dtrain into a binary one-hot repre-
sentation. This step is necessary to mitigate any performance
loss that may arise due to scale differences between the various
feature values.

Prediction Phase: During the prediction phase, the surro-
gate model generates numAug homogeneous encoding repre-
sentations for each architecture, as described in Section III-B.
These generated encodings, along with the original encoding,
are used to make predictions with the surrogate model. Each
architecture to be evaluated thus receives N + 1 predicted
values.

To obtain a robust fitness value, we calculate the average
of these predictions. The standard deviation of the predictions
is used to estimate the confidence level of the architecture.
A smaller confidence value indicates greater certainty in the
predicted result, thus enabling the model to prioritize archi-
tectures with higher confidence for further evaluation.

IV. EXPERIMENTAL RESULTS

To validate the efficacy of the proposed HENAS method, we
conducted experiments on various datasets. In Section IV-A,
we describe the experimental setup and the datasets used. In

Section IV-B, we present the experimental results on standard
datasets and compare them with state-of-the-art methods. In
Section IV-C, we provide an ablation study to evaluate the
contribution of the key modules proposed.

A. Hyper-parameter settings & datasets

The experiments were conducted within a genetic algorithm
framework, with a uniform mutation probability set to 0.1 and
a uniform crossover probability set to 0.5. During initializa-
tion, we randomly generated and evaluated 100 individuals.
The search process spanned 50 generations, with a population
size of 300 individuals per generation. In each generation,
the 5 individuals with the lowest confidence were added to
a separate list.

Starting from the 5th generation, the surrogate model was
updated every 5 generations, resulting in 5 updates throughout
the experiment. Prior to each update, the 5 individuals with the
lowest confidence from the list were evaluated and added to
the surrogate dataset. Additionally, the top 64 individuals from
the current generation were selected through environmental
selection, evaluated, and added to the surrogate dataset. After
these steps, the surrogate model was updated.

The surrogate model employed in this study is AdaBoost,
using 3000 decision trees as base learners. Three standard
datasets were used: CIFAR-10, CIFAR-100, and ImageNet.
For real-world evaluation, we leveraged pre-trained weights
provided by the OFA [20]. Specifically, we fine-tuned the
model for 5 epochs on CIFAR for real-world evaluation, while
for ImageNet, we directly used the inherited weights.

B. Experimental Results on Standard Datasets

We conducted experiments on the CIFAR-10, CIFAR-
100, and ImageNet datasets. For each experiment, we
present detailed results, including classification accuracy
(Acc), multiply-add operations (Madds), and search time. To
highlight the advantages of the proposed method, we also
provide comparisons with state-of-the-art algorithms, which
are presented in the tables.

1) Results on CIFAR-10: Table I presents the search
results on CIFAR-10. The final architecture searched by
HENAS achieves a classification accuracy of 98.38%, which
marks a significant improvement over most existing methods.
Additionally, the resulting network architecture has only 328M
Madds, making it computationally efficient. In comparison
with other methods that achieve classification accuracy above
97%, our approach offers clear advantages in terms of compu-
tational complexity. Despite HENAS requiring 1.8 GPU days
for the search, this duration remains practical and acceptable
for real-world applications.

2) Results on CIFAR-100: The experimental results of
HENAS on CIFAR-100 are presented in Table II. HENAS
outperforms all state-of-the-art methods in terms of classifi-
cation accuracy, achieving an impressive 87.36%. In terms of
computational complexity, HENAS ranks second only to SLE-
NAS [35], outperforming all other methods. This suggests that
the network architecture found by HENAS not only achieves
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CIFAR-10

DATASET.

Method Acc
(%)

Madds
(M)

Search Cost
(GPU Days)

Search
Method

MobileNetV2 [21] 95.74 300 - manual
EfficientNet-B0 [22] 98.1 387 - manual

ENAS [23] 97.11 - 0.5 RL
BlockQNN [24] 97.20 - 32 RL
NASNet-A [12] 97.35 608 1800 RL

sharpDARTS [25] 97.71 357 1.8 GD
MixNet-M [26] 97.9 359 - GD
MixPath-A [27] 98.1 348 10 GD
MixPath-B [27] 98.2 377 10 GD

DARTS [28] 97.00 547 1.5 GD
ADARTS [29] 97.54 - 0.2 GD

PA-DARTS [13] 97.42 - 0.36 GD
AmoebaNet-B [30] 97.5 555 3150 EA

CARS [31] 97.43 728 0.4 EA
FairNAS-A [17] 98.2 391 12 EA
FairNAS-B [17] 98.1 348 12 EA
FairNAS-C [17] 98.0 324 12 EA

RWE-S (Micro) [32] 95.95 203 0.05 EA
RWE-M (Micro) [32] 96.63 249 0.05 EA
RWE-L (Micro) [32] 97.02 340 0.05 EA
RWE-L (Macro) [32] 95.73 1074 0.14 EA

NSGA-Net [33] 97.98 817 4 EA
FPSO [34] 95.16 393 1.25 EA

SLE-NAS-A [35] 96.01 58 0.35 EA
SLE-NAS-B [35] 96.53 248 0.4 EA

AE-CNN [1] 95.3 - 27 EA
AE-CNN+E2EPP [36] 94.7 - 7 EA

CNN-GA [3] 96.78 - 35 EA
Evo-OSNet [37] 97.44 - 0.5 EA
SI-EvoNAS [38] 97.31 - 0.458 EA

EffPnet [4] 96.51 - < 3 EA
RelativeNAS [39] 97.66 - 0.4 EA

SPNAS [16] 98.20 319 1.4 EA
HENAS 98.38 328 1.8 EA

superior inference performance but also offers a good balance
with computational efficiency.

3) Results on ImageNet: Table III shows the results of
the proposed method on the ImageNet dataset. After final
training on the ImageNet training set, the architecture achieves
a classification accuracy of 78.69%, outperforming most state-
of-the-art methods. Compared to SPNAS [16], our method
reduces Madds by approximately 100M while maintaining
similar classification accuracy. Furthermore, due to the use of
weight inheritance, the search process is completed in just 0.22
days, which is significantly faster than most current methods.

C. Ablation study

In this section, we analyse the surrogate model compo-
nent of the proposed HENAS method and conduct ablation
experiments to assess the effectiveness of each module. The
experimental results are presented in Tables IV and V.

For all experiments in Table IV, we maintained a consistent
experimental setup, including the sampling process. Specifi-
cally, a total of 400 architectures were used for real evaluation
and to train the surrogate model. The architectures for real
evaluation inherited weights from the supernet provided by
OFA [20] and were validated on a random sample of 10,000
images from the ImageNet training set. Validation accuracy

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CIFAR-100

DATASET.

Method Acc
(%)

Madds
(M)

Search Cost
(GPU Days)

Search
Method

MobileNetV2 [21] 80.8 300 - manual
NASNet-A (L) [12] 86.7 12031 1800 RL

NASNet-A (M)) [12] 83.9 600 1800 RL
ENAS [23] 81.09 - 0.5 RL

MixNet-M [26] 87.1 359 - GD
ADARTS [29] 82.94 - 0.2 GD

PA-DARTS [13] 83.03 - 0.36 GD
MUXNet-M [40] 86.11 400 11 EA

AE-CNN [1] 77.60 - 36 EA
AE-CNN+E2EPP [36] 77.98 - 10 EA

CNN-GA [3] 79.47 - 40 EA
ZenNet [41] 84.4 487 0.5 EA

FairNAS-A [17] 87.3 391 12 EA
FairNAS-B [17] 87 348 12 EA
FairNAS-C [17] 86.7 324 12 EA
NSGA-Net [33] 85.58 817 4 EA
SI-EvoNAS [38] 84.30 - 0.813 EA

EffPnet [4] 81.51 - < 3 EA
Evo-OSNet [37] 84.16 - 0.5 EA
SLE-NAS-A [35] 78.76 58 0.4 EA
SLE-NAS-B [35] 81.93 208 0.4 EA
RelativeNAS [39] 84.14 - 0.4 EA

SPNAS [16] 87.26 351 1.6 EA
HENAS (ours) 87.36 297 1.68 EA

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE IMAGENET

DATASET.

Method Top-1
Acc (%)

Top-5
Acc (%)

Madds
(M)

Search Cost
(GPU Days)

Search
Method

MobileNetV2 [21] 72.0 91.0 300 - manual
EfficientNet-B0 [22] 76.3 93.2 390 - manual
EfficientNet-B1 [22] 78.8 94.4 700 - manual

NASNet-A [12] 74.0 91.6 564 1800 RL
NASNet-B [12] 72.8 91.3 488 1800 RL
NASNet-C [12] 72.5 91.0 558 1800 RL
MnasNet [42] 76.13 92.85 391 - RL

Shapely-NAS [43] 76.1 - 582 4.2 GD
MixPath-A [27] 76.9 93.4 349 10.3 GD
MixPath-B [27] 77.2 93.5 378 10.3 GD

PDARTS-AER [44] 75.7 92.8 587 0.3 GD
PDARTS-AER [44] 76.0 92.8 578 2.0 GD

PA-DARTS [13] 75.3 92.25 - 0.4 GD
Once-For-All [20] 76.9 93.2 230 2 EA

MUXNet [40] 76.6 93.2 318 11 EA
CARS [31] 75.2 92.5 591 0.4 EA

NSGANetV1 [33] 76.9 93.0 292.5 12 EA
FairNAS [17] 77.5 - 392 12 EA

SI-EvoNAS [38] 75.8 92.59 - 0.458 EA
MFENAS [45] 73.94 91.82 - 0.6 EA

Evo-OSNet [37] 77.48 93.53 - 8.6 EA
EffPnet [4] 72.99 90.75 - < 3 EA

CENAS-A [46] 77.4 92.8 276 1.91 EA
CENAS-B [46] 78.9 93.6 396 1.91 EA
CENAS-C [46] 79.6 94.1 482 1.91 EA
EPCNAS [47] 72.9 91.5 - 1.17 EA

RelativeNAS [39] 75.12 92.30 563 0.4 EA
SLE-NAS-A [35] 74.4 91.8 293 3 EA
SLE-NAS-B [35] 75.7 92.5 412 3 EA

SPNAS [16] 78.62 94.07 687 0.37 EA
HENAS (ours) 78.69 94.01 580 0.22 EA

was used as the evaluation metric. During the surrogate
model validation, we sampled 500 new architectures that were
distinct from the training set. These architectures underwent
the same real evaluation process to obtain their labels. After
training the surrogate model, predictions were made on the
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TABLE IV
ABLATION STUDY ON OPERATIONS FOR THE SURROGATE MODEL. (AUG:

THE HOMOGENEOUS ARCHITECTURE AUGMENTATION. CONF: THE
CONFIDENCE-BASED PREDICTION.)

Ablation setting Kendall’s Tau
(KTau) correlation

w/o Onehot 0.6612
w/o Aug & w/o Conf 0.6239

w/o Conf 0.6501
Proposed 0.6786

TABLE V
ABLATION STUDY ON CONFIDENCE-BASED PREDICTION DURING

SEARCHING PROGRESS. (CONF: THE CONFIDENCE-BASED PREDICTION.)

Ablation
setting

CIFAR-10 CIFAR-100 ImageNet
Acc Madds Acc Madds Acc Madds
(%) (M) (%) (M) (%) (M)

w/o Conf 98.24 432 86.35 280 78.01 616
Proposed 98.38 328 87.36 297 78.69 580

surrogate validation set, and the Kendall’s Tau (KTau) cor-
relation coefficient between the predicted and real evaluation
results was computed.

Confidence prediction relies on the architecture augmenta-
tion method, and as such, is not applicable when this method
is not employed. From the results in Table IV, it can be ob-
served that using one-hot encoding slightly improved KTau,
with an increase of 0.0174. However, the homogeneous ar-
chitecture augmentation method significantly enhanced the
predictive performance of the surrogate model, achieving an
improvement of 0.0262. For the experiments using architecture
augmentation, we divided the 400 architectures into four
sampling sessions. For each session, except the first, 300 new
architectures were randomly sampled, and the 10 architectures
with the worst confidence and prediction accuracy greater
than the average were selected to update the surrogate model,
alongside 90 new architectures. With this approach, confidence
prediction showed a notable improvement of 0.0285 when
using the full set of 400 architectures.

To further investigate the role of confidence prediction
in the search phase, we conducted an ablation study by
removing this process. To ensure fairness, in the ablation
experiment presented in Table V, we included an additional
step: each time the surrogate model was updated, we also
added 5 architectures with the best fitness values to the
surrogate dataset. This step ensures that the surrogate models
in the ablation study are trained on the same sample size at
each stage. The results from this experiment are shown in
Table V. The findings highlight that confidence prediction is
effective across the three standard datasets. On CIFAR-100
and ImageNet, the final networks obtained with confidence
prediction achieve slightly higher classification accuracy, while
maintaining similar computational complexity. On CIFAR-
10, confidence prediction leads to a savings of nearly 100M
Madds, along with a 0.14% improvement in classification
accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced HENAS, a novel method
designed to identify superior architectures within the Mo-
bileNetV3 search space. HENAS leverages a unique homo-
geneous architecture augmentation technique, which allows
for the generation of additional evaluated architecture samples
without increasing search or evaluation time. This enables the
training of a more accurate surrogate model, enhancing the
overall search process.

Building on the architecture-augmented samples, we pro-
posed a confidence prediction method that further refines
the surrogate model’s performance. This method predicts
multiple potential outcomes for a given architecture, derived
from different representations of the same architecture. By
computing the standard deviation of these predicted values,
we obtain the surrogate model’s confidence in its predictions.
Using this confidence, we strategically incorporate the most
uncertain samples into the surrogate dataset, boosting the
model’s accuracy.

Additionally, we introduced an improvement to the genetic
algorithm framework by incorporating a candidate pool. This
pool stores individuals with low prediction confidence, allow-
ing us to focus the surrogate model updates on these uncertain
samples. This targeted approach improves the effectiveness of
the model and the overall architecture search.

For future work, we aim to extend the current approach by
developing a more generalized confidence prediction method
that can be applied across a wider range of architectures.
Furthermore, we plan to conduct additional experiments to
explore an optimal balance between the number of samples
selected from the candidate pool and the number of top-
performing architectures chosen during each surrogate model
update. This will enable us to fine-tune the genetic algorithm’s
efficiency and performance in diverse settings.
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