
Engineering Applications of Artificial Intelligence 124 (2023) 106504

C
o
P
a

b

A

K
G
M
D
O
D

1

I
p
2
t
p
T
n
p
t
w
t
s
e
l

m
a

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

ontinuously evolving dropout with multi-objective evolutionary
ptimisation
engcheng Jiang a, Yu Xue a,∗, Ferrante Neri b

School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
NICE group, Department of Computer Science, University of Surrey, Guildford, GU2 7XH, United Kingdom

R T I C L E I N F O

eywords:
enetic algorithms
ulti-objective optimisation
eep neural networks
ver-fitting
ropout

A B S T R A C T

Dropout is an effective method of mitigating over-fitting while training deep neural networks (DNNs). This
method consists of switching off (dropping) some of the neurons of the DNN and training it by keeping
the remaining neurons active. This approach makes the DNN general and resilient to changes in its inputs.
However, the probability of a neuron belonging to a layer to be dropped, the ’dropout rate’, is a hard-to-tune
parameter that affects the performance of the trained model. Moreover, there is no reason, besides being more
practical during parameter tuning, why the dropout rate should be the same for all neurons across a layer.
This paper proposes a novel method to guide the dropout rate based on an evolutionary algorithm. In contrast
to previous studies, we associate a dropout with each individual neuron of the network, thus allowing more
flexibility in the training phase. The vector encoding the dropouts for the entire network is interpreted as
the candidate solution of a bi-objective optimisation problem, where the first objective is the error reduction
due to a set of dropout rates for a given data batch, while the second objective is the distance of the used
dropout rates from a pre-arranged constant. The second objective is used to control the dropout rates and
prevent them from becoming too small, hence ineffective; or too large, thereby dropping a too-large portion
of the network. Experimental results show that the proposed method, namely GADropout, produces DNNs
that consistently outperform DNNs designed by other dropout methods, some of them being modern advanced
dropout methods representing the state-of-the-art. GADroput has been tested on multiple datasets and network
architectures.
. Introduction

Deep learning constitutes an important branch of machine learning.
t has developed rapidly in recent years and been widely applied to
roblems in many fields, such as image classification (Kokalis et al.,
020), object detection (Zhang et al., 2021) and time-series predic-
ion (Xue et al., 2021b). The training stage is the most important
rocess in applying a deep neural network to solve practical problems.
o achieve the best overall performance, the parameters of the neural
etwork need to be optimised with gradient-based back-propagation. At
resent, due to the lack of training data for increasingly complex tasks,
he depth and width of neural networks have been greatly expanded,
hich leads to problems in the training process, causing over-fitting on

he dataset (Xue et al., 2022b). Over-training on the training set is very
usceptible to the problem of over-fitting, where reductions in training
rrors are accompanied by increases in generalisation errors, which can
ead to the failure of the network at the test stage.

To avoid the over-fitting problem, researchers have developed many
ethods, which can be roughly divided into negative methods, semi-

ctive methods and active methods. (1) Negative methods depend

∗ Corresponding author.
E-mail addresses: pcjiang@nuist.edu.cn (P. Jiang), xueyu@nuist.edu.cn (Y. Xue), f.neri@surrey.ac.uk (F. Neri).

on large-scale searches on numerous models and hyper-parameters to
find deep neural networks with good generalisation capacity. Negative
methods include neural architecture search (Zhang et al., 2022; Lu
et al., 2021) and neural network ensemble learning (Ma et al., 2022;
Chandra and Yao, 2006). (2) Semi-active methods involve making
small modifications to the model and fine-tuning later to avoid over-
fitting. These include dynamic network structure and network prun-
ing (Zhou et al., 2022, 2021). (3) Active methods prevent over-fitting
through regularisation during training. The methods most frequently
used are L2, normalisation, data enhancement, weight decay (Krogh
and Hertz, 1991; Loshchilov and Hutter, 2019) and dropout (Srivastava
et al., 2014).

‘Dropout’ is to randomly inactivate a subset of neurons during
training (Yin et al., 2021; Valcarce et al., 2019). The probability of
inactivation is called the dropout rate. Hinton et al. (2012), Many
studies have shown that the generalisation ability of the trained model
can be greatly improved by using the dropout method. Many forms of
dropout method have been proposed, including by Bernoulli (Ba and
Frey, 2013) and Gaussian (Wang and Manning, 2013; Gal et al., 2017).
ttps://doi.org/10.1016/j.engappai.2023.106504
eceived 14 July 2022; Received in revised form 24 April 2023; Accepted 19 May
vailable online xxxx
952-1976/© 2023 Elsevier Ltd. All rights reserved.
2023

https://doi.org/10.1016/j.engappai.2023.106504
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106504&domain=pdf
mailto:pcjiang@nuist.edu.cn
mailto:xueyu@nuist.edu.cn
mailto:f.neri@surrey.ac.uk
https://doi.org/10.1016/j.engappai.2023.106504


P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504

t
p
t
m
t
e
(
t
r
2
i
a

Most of these methods use different distribution functions based on
stochastic progress to determine neuron inactivation. Some studies in
recent years have attempted to add some trainable parameters to the
dropout layers (Xie et al., 2022; Pham and Le, 2021). These parameters
are changeable by back-propagation. However, this introduces the
problem that the learning rate of these trainable parameters is very
difficult to set for training.

1.1. Related work: Dropout in linear layers

Researchers have been working on various methods to inhibit over-
fitting. At present, dropout and its variants are the most effective
methods. The main idea is to set a probability of inactivation (i.e.,
dropout rate 𝑝) for each neuron. Through partial activation during
training, the neural network improves its generalisation ability in a way
similar to network integration. On the basis of standard dropout, the
dropout rate used by Ba and Frey (2013) in the Bernoulli mask is no
longer set manually, but calculated by activation function value. Direct
deleting of neurons requires using 1

1−𝑝 to adjust the output, such that
he output of the training process has the same distribution as the out-
ut of the testing process, which will increase the computation during
he training process. Therefore, some researchers use Gaussian dropout
ethods to enhance or weaken neurons, thus controlling the output dis-

ribution by changing mean value (Wang and Manning, 2013; Kingma
t al., 2015; Gal et al., 2017). In the following research, Shen et al.
2018) successfully applied this idea to all basic modules. In contrast
o most dropout methods, DropConnect does not inactivate neurons but
emoves connections. This is also called weight dropout (Wan et al.,
013). Maxout can be seen as another variant of dropout. The objective
s to add another linear layer with 𝐾 neurons after the original layer,
nd only the maximum value of the outputs generated from these 𝐾

neurons is retained. Tseng et al. (2020) proposed the DropGrad method,
which drops the gradient in back propagation process.

Since linear structures also exist in recurrent neural networks
(RNNs), dropout can also be used. Some researchers believe that differ-
ent parts of the RNN structure have different functions and therefore
require different dropout strategies. RNNdrop is used to randomly
discard the long-term memory to prevent over-fitting in the training
process (Moon et al., 2015). In long short-term memory (LSTM), Seme-
niuta et al. (2016) the part that is added into the long-term memory in
each block is randomly discarded. Gal and Ghahramani (2016) applied
variational dropout on the input of the current block. Krueger et al.
(2017) make applied blocks randomly activated instead of neurons.
After generative adversarial networks (GANs) appeared, the adver-
sarial dropout method was proposed (Saito et al., 2018; Park et al.,
2018). This method guides the dropout method through the process of
adversarial learning, which is also applied to RNNs (Park et al., 2019).

1.2. Related work: Dropout in convolutional layers

Convolutional neural networks (CNNs) have different properties to
linear structures. The direct random inactivation of neurons in the
convolution layers cannot effectively introduce noise in the training
process. Therefore, most dropout methods in linear layers are not
applicable to such structures. Wu and Gu (2015) used standard dropout
before max-pooling, thereby partially eliminating the original maxi-
mum of each calculation. Park and Kwak (2017) combined this method
with Gaussian dropout and completed Max-Drop using Gaussian gate.
However, these two methods do not add enough noise to the training
process. Tompson et al. (2015) randomly dropped the feature map in a
more efficient way for the object localisation task. In the improvement
of this method by Hou and Wang (2019), global pooling and random
coefficient are used to control this process. Shi et al. (2020) focused on
discarding the location with small self-information to make the neural
network more attentive to shape bias.
2

The cutout method can be regarded as a variant of the dropout
method on the input of networks, which randomly masks squares in the
input images (DeVries and Taylor, 2017), but cannot be applied during
the calculation of convolution. Ghiasi et al. (2018) solve this problem
by dropping a randomly chosen area of the inputs of layers, improving
the performance of the network in image classification and object
detection. In addition, with the popularity of ResNet, Huang et al.
(2016) and Hayou and Ayed (2021) randomly inactivated the residual
block with random depth method, also known as DropPath. These two
methods are both applicable to all multi-branch network structures.
After analysing the residual block, Singh et al. (2016) combined iden-
tity mapping with zero setting operation and proposed Swapout, which
makes each element randomly chosen from 𝑥, 𝑓 (𝑥) and 𝑥 + 𝑓 (𝑥). Choe
et al. (2021) combined the attention mechanism with the dropout
method and automatically generated self-attention map, drop mask,
and importance map as the basis of dropping features in the training
process.

1.3. Related work: Adaptive dropout

The dropout rate plays an important role in the dropout imple-
mentation, as its incorrect setting may jeopardise the functioning of
the neural network. In particular, Rennie et al. (2014) observed that
large dropout rate values can lead to ineffective learning, especially in
the late stages of learning. As a countermeasure, Rennie et al. (2014)
suggested an annealing approach: that is, a reduction of the dropout
rate over learning time according to a negative exponential function.
However, Morerio et al. (2017) demonstrated that too-low dropout
values are also detrimental to learning, as they cause an over-fitting of
the data. These findings support two proposals: (1) the correct dropout
rate should be close to neither 0 nor 1; (2) since learning is a dynamic
process, successful learning might require a dynamic dropout rate.

Since it is difficult to state what dropout rate is more reasonable
by proofs, some studies use methods to intervene in this stochastic
process. Lakshminarayanan et al. (2017) used dropout based on deep
integration. Achille and Soatto (2018) designed the regularisation ac-
cording to the information bottleneck. Xie et al. (2022) used trainable
parameters to adjust the random matrix that controls the dropout
progress.

Some researchers add heuristic elements to this stochastic pro-
cess. Pham and Le (2021) use the controller to adjust the dropout rate
based on reinforcement learning. Salehinejad and Valaee (2022) use
Gibbs distribution and energy function to adjust dropout and prune the
network. Evolutionary algorithms are also used to adjust dropout. Chen
et al. (2018) improve a framework that enables the genetic algorithm
(GA), and differential evolution can be used to control the dropped
neurons. This method is like ensemble learning, which can most often
yield good results in sub-network training. However, there is a risk of
further increasing over-fitting. Guo et al. (2022) design a new layer and
use AR-MOEA to control the activated neurons. However, this method
is specifically used to solve the surrogate problem in SAEA, but is rarely
applied to other tasks. It also requires the use of dropout in the test
process, which introduces more errors.

1.4. Motivation and proposal

Considering that it is difficult to find the best value of the dropout
rate through traditional methods, some researchers use approaches
with automatic adjustments, but introduce redundant computation,
which can affect the speed of training (Pham and Le, 2021). Such
metaheuristic approaches as evolutionary computation are effective for
tuning the hyper-parameters in the dropout layers. Instead of requiring
a deep understanding of the problem, they encode the solutions and
approach the problem by searching and retaining solutions on the basis
of their objective function values alone. In the case of evolutionary
computation, this search heuristic is inspired by the idea of ‘evolution’.



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504
Fig. 1. Decoding strategy for dropout rates of each neuron.
t
i
a
w

t
v
d
t
d

𝑀

w
i
d
s
v

2

b
a

In the context of neural network training and design, metaheuris-
tics have been broadly used in various scenarios, such as Xue et al.
(2021a,c, 2022b,c) and Xue et al. (2022a). In various contexts and for
various purposes, metaheuristics and (especially) evolutionary methods
have also been combined with dropout methods (Guo et al., 2022;
Salehinejad and Valaee, 2022; Chen et al., 2018).

This paper proposes a metaheuristic approach to automating the
dropout while enhancing its performance. More specifically, an adap-
tive dropout method based on Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II), called GADropout, is proposed to guide the dropout
rate on each feature during training. The contributions of this paper are
summarised as follows.

1. The evolutionary algorithm is fully introduced into the train-
ing process of the neural networks to dynamically adjust the
probability of dropout.

2. The dropout rate of each feature in each layer can be flexibly
varied, which greatly increases the flexibility of the algorithm.

3. The absolute value between the threshold and each individual is
used as another objective to give the neural network the ability
to automatically adapt to the data for different training phases.

2. GADropout

2.1. Encoding scheme and initialisation

In neural networks, the traditional dropout method adopts the same
dropout rate, which needs to be set manually, for each neuron in the
same layer. In addition, the dropout rate has been fixed during the
whole training stage. In this paper, the dropout rates of each neuron
are regarded as genes to form the individual, which are dynamically
adjusted by an evolutionary algorithm. In this way, the most suitable
dropout rates for each neuron in each layer can be used during the
training process. We have proposed to encode the topology of a network
as a vector of dropout rates. This vector is the candidate solution of
the problem. As shown in Fig. 1, the dropout rate of each neuron cor-
responds to a position in the candidate solution. Each design variable
(𝑥𝑗 , 𝑜𝑗 , 𝑦𝑗 in Fig. 1) is a decimal number between 0 and 1 representing
the dropout rate of that neuron; that is, the probability that the neuron
is inactivated during back propagation.

Let us consider that the proposed algorithm is population-based.

With the purpose of introducing the notation, we indicate with 𝐼𝑛𝑑𝑖,𝑗

3

he jth position of dropout rate within the ith candidate solution/
ndividual (i.e., 𝐼𝑛𝑑𝑖,∗). The initialisation of the proposed GADropout
lgorithm consists of randomly generating a population of vectors
hose values are between 0 and 1.

In the decoding stage, since dropout is only carried out during
raining, the scale coefficient should be used to scale the discarded
alue of neurons in each layer in order to maintain the same data
istribution of neuron output during training and testing. Considering
hat most algorithms are updated based on batch stochastic gradient
escent (Batch SGD), for each neuron 𝑋∗,𝑗 that is processed under the

corresponding dropout rate 𝐼𝑛𝑑𝑖,𝑗 , the mathematical expectation is as
Eq. (1)

𝐸(𝑋∗,𝑗 ) = 𝑋∗,𝑗 × 𝐼𝑛𝑑𝑖,𝑗 (1)

where 𝑋 represents the neuron input, and 𝑘 represents the index of
the input among the current batch. The mathematical expectation data
value of the current batch data after GADropout is calculated as Eq. (2).

𝐸(𝑋𝑘,∗) = 𝑋𝑘,∗ × 𝐼𝑛𝑑𝑖,∗ (2)

To simplify and reduce the amount of calculation in the validating and
testing process, the actual output through GADropout during training
is calculated as Eq. (3)

𝑌 = 𝑋 ⊗𝑀
𝐼𝑛𝑑𝑖,∗

(3a)

∗,𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑘; 𝐼𝑛𝑑𝑖,𝑗 ) (3b)

here ⊗ is element-wise multiplication and 𝑀 is a binary mask matrix
n which each row 𝑀∗,𝑗 is a vector of length 𝑘 obeying a Bernoulli
istribution with probability 𝐼𝑛𝑑𝑖,𝑗 . In the mask matrix (i.e., 𝑀), each
ub-mask 𝑀∗,𝑗 is used for the inputs of a batch at the jth neuron. In the
alidating and testing process, the GADropout is skipped.

.2. Multi-objective optimisation

GADropout manipulates and evolves vectors of dropout rates on the
asis of two objectives. We formulate the selection of dropout rates as
bi-objective optimisation problem. For each generic individual 𝐼𝑛𝑑𝑖,∗,

the first fitness value 𝑓1 is calculated as follows. First, two data batches
for training and validation, 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙 respectively, are randomly

selected from the data set. The validation error 𝑒1 of DNN is calculated



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504

c
b

𝑓

o
b
t
c
b

c
a
d
2
c
t
e
a
i
p
t
a

𝑓

1
1
1

t

using 𝐷𝑣𝑎𝑙. Then, the DNN is trained with the dropout rates encoded
in 𝐼𝑛𝑑𝑖,∗. SGD is used for training. The validation error 𝑒2 is then
alculated again, using 𝐷𝑣𝑎𝑙. The objective function 𝑓1 is the difference
etween the errors (Line 6 in Algorithm 1).

1 = 𝑒2 − 𝑒1. (4)

The objective function 𝑓1 represents the improvement, in terms
f accuracy, due to the dropout strategy encoded in 𝐼𝑛𝑑𝑖,∗. Since
oth 𝑒1 and 𝑒2 are positive definite, the sign of 𝑓1 indicates whether
his dropout strategy is beneficial or detrimental. In particular, the
odomain of 𝑓1 is [−1, 1]. If 𝑓1 is negative, the dropout strategy is
eneficial; if 𝑓1 is positive, the dropout strategy is detrimental.

While 𝑓1 assesses the quality inferred by the dropout strategy en-
oded in 𝐼𝑛𝑑𝑖,∗, it does not take into consideration an important issue
ssociated with the concept of dropout. Multiple studies show that the
ropout rates should be neither too high nor too low (Garbin et al.,
020). A dropout rate ≈ 1 means that no dropout occurs, with the
orresponding risk of over-fitting. Conversely, a dropout rate ≈ 0 means
hat the neuron has no outputs, thus risking that some features are
xcluded from training. Although several studies empirically suggest
ppropriate ranges of variation for dropout rates, there is no theoret-
cal justification behind any specific setting for these bounds. On this
remise, we propose to embed the effective ranges of dropout rates into
he second objective function 𝑓2. This objective function measures the
verage distance from a reference parameter 𝑡:

2 =
1
𝐿

𝐿
∑

𝑗=0
|𝐼𝑛𝑑𝑖,𝑗 − 𝑡| (5)

where 𝐿 is the length of the individual and 𝑡 is a threshold value
set in our experiments to 0.5, the middle of the range for dropout
rates. The objective function 𝑓2 thus has the role of guiding the search
and preventing the dropout rates from approaching the undesired two
extremes of their theoretical range (0 and 1). At the same time, this
formulation of 𝑓2 enables us to not have to set too-exact bounds for
the ranges of dropout rates.

The details of the calculation of the two objective functions are
shown in Algorithm 1.

2.3. Evolutionary framework

The population of dropout strategies 𝐼𝑛𝑑𝑖,∗, with its corresponding
objective functions, is processed by an evolutionary algorithm to detect
promising dropout strategies. GADropout processes the DNN that the
use intends to train and the corresponding dataset. First, the number of
neurons 𝐿 of the DNN is calculated. The initial population 𝑃0 of dropout
strategies 𝐼𝑛𝑑𝑖,∗ ∈ [0, 1]𝐿 is randomly generated. The individuals of
𝑃0 are then evaluated, according to Algorithm 1, to generate a data
structure 𝐹0 containing the objective function values of each individual.

Algorithm 1 Calculation of the objective function values. 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞()
Input: Deep neural network DNN and individual (vector of dropout

rates) 𝐼𝑛𝑑𝑖,∗.
1: 𝐷𝑡𝑟𝑎𝑖𝑛 ← Randomly sample a training batch.
2: 𝐷𝑣𝑎𝑙 ← Randomly sample a validation batch.
3: 𝑒1 ← Validation error inferred by 𝐷𝑣𝑎𝑙 on DNN.
4: Train DNN by using 𝐷𝑡𝑟𝑎𝑖𝑛 and the vector of dropout rates 𝐼𝑛𝑑𝑖.
5: 𝑒2 ← Validation error inferred by 𝐷𝑣𝑎𝑙 on DNN (after being trained

with dropout).
6: 𝑓1 = 𝑒2 − 𝑒1.
7: 𝑓2 =

∑𝐿
𝑗=0 |𝐼𝑛𝑑𝑖,𝑗 − 𝑡|.

8: Append 𝑓1 and 𝑓2 to 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠, i.e., 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 ←
(

𝑓1, 𝑓2
)

9: return 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠
4

Algorithm 2 GADropout: Evolutionary framework.
Input: Deep neural network DNN, data set of size 𝑁 .
Output: Trained deep neural network DNN.
1: 𝐿 ← Calculate number of neurons in DNN.
2: 𝑃0 ← Initialise population.
3: 𝐹0 ← Evaluate(𝑃0) with Algorithm 1
4: for 𝑔 = 1 to 𝐺 do
5: 𝑄𝑔 ← Get new offspring with uniform crossover and polynomial

mutation.
6: 𝐹 ′

𝑔 ← Evaluate(𝑄𝑔) ∪ 𝐹𝑔−1 (use Algorithm 1)
7: 𝑃 ′

𝑔 ← 𝑄𝑔 ∪ 𝑃𝑔−1.
8: Non-dominated sorting.
9: 𝑃𝑔 ← Retain individuals in 𝑃 ′

𝑔 with crowding rules.
0: 𝐹𝑔 ← Delete the corresponding fitness value in 𝐹 ′

𝑔 .
1: end for
2: return The parameters of trained neural network DNN.

Fig. 2. The overall process of searching. The dashed lines signify the original training
process, and the solid lines signify the iterative process of the population.

Then a loop of 𝐺 generations is performed. At each generation 𝑔, from
he population at the g th generation, 𝑃𝑔 , the offspring population 𝑄𝑔

is produced by applying uniform crossover (Eiben and Smith, 2015)
and polynomial mutation (Deb and Tiwari, 2008) to solutions selected
by means of the binary tournament selection described in Deb et al.
(2002). It is worth mentioning that we chose uniform crossover to limit
its exploration, as we have observed that losing promising values of
dropout rates tended to deteriorate the performance of DNN. Thus,
we chose a crossover operator that preserves them. On the other
hand, the polynomial mutation according to the implementation of Deb
and Tiwari (2008) enables the generation of new dropout rates for a
restricted number of design variables 𝐼𝑛𝑑𝑖,𝑗 (dropout rates). The newly-
generated individuals comprising the offspring population 𝑄𝑔 are then
evaluated according to Algorithm 1, and both parent and offspring
population are merged to produce the provisional population 𝑃 ′

𝑔 . The
fast non-dominated sorting and crowding rules described in Deb et al.
(2002) are then applied to select the population for the subsequent gen-
eration. Algorithm 2 outlines the steps of the evolutionary framework
of GADropout.

The overarching scheme describing the evolutionary process of the
solutions is depicted in Fig. 2. It shows how the population of 𝑃
individuals 𝐼𝑛𝑑𝑖,∗ interacts with the database and the training process.
Note that two concurrent optimisation processes are integrated into
the framework. The first is the evolution, over 𝐺 generations, of the
dropout strategies. The second is the training, over 𝐸 epochs, of each
DNN. Each training is performed on a data batch (𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙 in
Section 2.2) of size 𝐵, while 𝑁 is the size of the entire dataset.

Note that DNN training by means of the GADropout outlined in

Algorithm 2 requires time comparable to that of a standard DNN



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504

s
‘

o

training. Specifically, the time complexity of the algorithm general
remains essentially unchanged, as long as Eq. (6) is verified.

𝐸 ×
⌈𝑁
𝐵

⌉

≈ 𝐺 × 𝑃 (6)

In other words, the training times are comparable as long as
GADropout and traditional training process the same amount of data.
GADropout may introduce some overhead due to algorithmic steps like
the non-dominated sorting, but this is only minor.

To share the implementation details of our method with the reader,
we have published our code at https://github.com/pcjiang1998/GADr
opout.

3. Experiments and analysis

3.1. Datasets

To demonstrate the effectiveness of the proposed method in pre-
venting over-fitting during neural network training, sufficient experi-
ments on multiple datasets were carried out. Some small and medium-
sized datasets on multi-layer perception were collected from UCI Ma-
chine Learning Repository, including ‘Wine’,1 ‘Letter Recognition’,2
‘dorothea’,3 ‘Dry Bean Dataset’4 and ‘Shill Bidding Dataset’.5 In addi-
tion, several large datasets were collected, including ‘Swarm Behaviour
Data’6 and ‘Winnipeg Dataset’.7 The smallest dataset had about 200
amples, while the largest had over 320,000 samples. In addition, the
MNIST’8 and ‘Fashion MNIST’9 datasets were flattened and used as one-
dimensional data. The MNIST and Fashion MNIST datasets both have
10 categories, composed of 60,000 grey-scale pictures of size 28 × 28
for training and 10,000 pictures for testing, including, respectively,
pictures of handwritten digits and pictures of grey-scale clothing.

To test the availability of the proposed method on classifiers in
convolutional neural networks, experiments were performed on various
scale datasets. Lenet was selected as the neural network model on
MNIST and Fashion MNIST datasets. CIFAR dataset10 is a medium-sized
dataset commonly used in image classification tasks, which has two
versions. CIFAR-10 has 10 categories, and CIFAR-100 has 100 cate-
gories. They are both composed of 60,000 pictures of size 32 × 32 × 3,
with 50,000 images for training and 10,000 images for testing. Another
dataset, the street view house numbers (SVHN) dataset,11 contains
99,289 colour pictures of house numbers: 73,257 images for training
and 26,032 images for testing. It contains a large number of house
numbers of different sizes, mixed with a lot of irrelevant noise, so
it is more practical. In addition, down-sampled Imagenet dataset12

was also selected for experimental comparison. Imagenet is a huge
dataset, containing millions of images in 1000 categories, posing a
huge challenge to the classification tasks. To demonstrate the capacity
of the proposed method to solve the over-fitting problem, the sub-
dataset, which was down-sampled, was used for the experiments, i.e.,
mini-Imagenet and Imagenet-32 × 32 were selected.

1 https://archive.ics.uci.edu/ml/datasets/Wine.
2 https://archive.ics.uci.edu/ml/datasets/Letter+Recognition.
3 https://archive.ics.uci.edu/ml/datasets/dorothea.
4 https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset.
5 https://archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset.
6 https://archive.ics.uci.edu/ml/datasets/Swarm+Behaviour.
7 https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+

ptical-radar+data+set.
8 http://yann.lecun.com/exdb/mnist/.
9 https://github.com/zalandoresearch/fashion-mnist.

10 https://www.cs.toronto.edu/~kriz/cifar.html.
11 http://ufldl.stanford.edu/housenumbers/.
12 https://image-net.org/.
5

3.2. Parameter setting

For the above datasets, networks of different sizes were used to
prove the effectiveness of the algorithm. To demonstrate the effective-
ness of the proposed method and to ensure a fair comparison, each
network was trained for the same number of epochs on the same data.
From all datasets that were not classified as test sets, 20% was taken
from the training dataset for testing. From all datasets that were not
divided into validation datasets, 20% was extracted from the remaining
training datasets for validation. After the partition, the rest of the
training datasets were used as the actual training datasets. Specifically,
for multi-layer perception, each set of experiments was conducted on
the complete training dataset for 200 epochs, and the learning rate was
set to 0.01. Three classic convolutional neural networks, Lenet, VGG16
and ResNet18, were used for comparison. Each set of experiments
trained 300 epochs on the complete training dataset. During the train-
ing process, the learning rate decreased to one-tenth at 150th epoch
and 225th epoch. During the training process in all experiments, cross-
entropy loss was used for back propagation, and stochastic gradient
descent (SGD) optimiser was used to optimise the parameters, in which
weight decay was set to 5e–4 and momentum was set to 0.9. Since
the process of GADropout is an iterative process based on population,
the population size and number of search generations needed to be
set. Assuming that the number of training epochs originally required
is 𝐸, the total amount of training data is 𝑁 , and the size of each batch
obtained by SGD optimiser during training is 𝐵, the population size 𝑃
is set to ⌈𝑁∕𝐵⌉ and the number of search epochs is set to 𝐸. Therefore,
the total number of evaluations is ⌈𝑁∕𝐵⌉×𝐸. In all experiments using
the proposed method, the threshold in the optimisation objective 𝑓2
was set to 0.5 by experience.

To further illustrate the ability of our method to consistently outper-
form the other algorithms, we repeated the experiments on each dataset
multiple times. For the datasets from UCI, MNIST and FashionMNIST,
we ran each algorithm 10 times. For the SVHN and CIFAR datasets,
we ran each set of experiments for 5 times as each run requires a large
computational time. For each problem instance we show average value,
standard deviation and corresponding 𝑝-value.

3.3. Performances on UCI datasets

First, the datasets from UCI were used in the experiment. On the
Winnipeg dataset, the batch size was set to 128. On all other datasets,
the batch size was set to 32. Thirteen comparison algorithms were se-
lected for algorithm comparison (see Table 1). All deep neural networks
contain two hidden layers, both with 1024 neurons. To prevent the
neural networks from being difficult to train due to large values in
features, all features in the datasets were normalised before training.
For non-numeric data in features, one-hot encoding was used. The
final results are shown in Table 1, and GADropout achieves good
results in various comparative experiments. To illustrate the conver-
gence of GADropout, we plot the population values in the objective
space on three datasets, which are ‘Dry Bean Dataset’, ‘Shill Bidding
Dataset’ and ‘Letter Recognition’. Their hyper-volume is 1.22, 1.11 and
2.72, separately. Each figure shows the population of the 50th, 100th,
150th and 200th generations. From Fig. 3, we see that GADropout can
continuously search in smaller directions for both objectives.

3.4. Performances on MNIST and fashion MNIST

In this experiment, some comparisons were made on MNIST and
Fashion MNIST datasets. First, the deep neural network was used to
test the effectiveness of the proposed method, using the same structure
as the experiments in Section 3.3. Second, the comparison experiment
was performed again, using variant structures based on Lenet, whose
first layer is filled with 2 pixels. In the experiments on these two

structures, batch size was set to 256. As mentioned in Section 3.2, in

https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://github.com/pcjiang1998/GADropout
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/dorothea
https://archive.ics.uci.edu/ml/datasets/Dry+Bean+Dataset
https://archive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset
https://archive.ics.uci.edu/ml/datasets/Swarm+Behaviour
https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+optical-radar+data+set
https://archive.ics.uci.edu/ml/datasets/Crop+mapping+using+fused+optical-radar+data+set
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://image-net.org/


P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504

t
e
t
t
A
d

3

m
R
T
n
o

f

Table 1
Classification accuracy (%) of experiments conducted on UCI datasets using multi-layer perceptrons with two hidden layers. (The last line represents the total numbers of evaluations
during evolution.)

Wine Letter Recognition Swarm Behaviour Winnipeg Dorothea Dry Bean Shill Bidding

No dropout 85.36 ± 2.50 96.01 ± 0.10 67.79 ± 0.06 99.40 ± 0.15 96.09 ± 0.92 90.93 ± 0.15 97.59 ± 0.30
1.028e−10 7.624e−16 6.698e−21 6.353e−02 2.363e−07 7.020e−17 2.869e−14

Standard dropout (Hinton et al.,
2012)

93.21 ± 1.07 96.10 ± 0.08 67.95 ± 0.05 99.44 ± 0.16 96.40 ± 1.03 91.50 ± 0.15 97.95 ± 0.31
5.117e−07 7.266e−16 9.558e−21 2.433e−01 2.617e−06 2.316e−14 7.968e−13

Gaussian dropout (Srivastava
et al., 2014)

94.64 ± 1.79 96.19 ± 0.09 67.98 ± 0.07 99.48 ± 0.15 96.11 ± 0.63 91.79 ± 0.15 98.37 ± 0.27
2.946e−04 8.196e−15 2.505e−19 6.545e−01 1.653e−08 1.289e−12 9.635e−12

Variational dropout (Kingma
et al., 2015)

87.50 ± 1.79 96.28 ± 0.07 68.03 ± 0.09 99.42 ± 0.14 97.23 ± 0.92 91.15 ± 0.14 98.06 ± 0.30
8.209e−11 4.781e−15 7.735e−18 9.866e−02 8.522e−05 3.010e−16 1.675e−12

DropConnect (Wan et al., 2013) 88.21 ± 1.64 96.42 ± 0.11 68.33 ± 0.07 99.38 ± 0.16 97.37 ± 0.99 91.41 ± 0.12 98.15 ± 0.36
1.285e−10 1.964e−12 1.021e−16 3.860e−02 2.958e−04 1.970e−15 3.409e−11

Concrete dropout (Gal et al.,
2017)

92.50 ± 1.92 96.96 ± 0.09 68.42 ± 0.09 99.44 ± 0.11 97.46 ± 1.11 92.74 ± 0.12 98.19 ± 0.33
1.937e−06 2.140e−06 8.519e−15 1.064e−01 9.666e−04 1.252e−03 1.829e−11

Fraternal dropout (Zolna et al.,
2018)

94.29 ± 1.75 96.32 ± 0.11 68.46 ± 0.08 99.38 ± 0.07 97.63 ± 0.65 91.73 ± 0.12 98.28 ± 0.27
9.923e−05 3.159e−13 7.905e−15 1.600e−03 1.689e−04 7.009e−14 2.610e−12

Gradient dropout (Tseng et al.,
2020)

92.14 ± 3.11 96.92 ± 0.10 68.58 ± 0.07 99.42 ± 0.09 97.54 ± 0.65 92.61 ± 0.14 99.60 ± 0.29
4.388e−05 9.144e−07 7.594e−14 4.391e−02 9.282e−05 3.291e−05 1.237e−02

Meta dropout (Lee et al., 2020) 92.50 ± 2.97 97.08 ± 0.10 68.62 ± 0.09 99.41 ± 0.07 97.88 ± 1.00 91.89 ± 0.10 99.54 ± 0.21
5.798e−05 1.138e−03 1.386e−12 1.037e−02 5.461e−03 3.204e−13 5.286e−04

Auto dropout (Pham and Le,
2021)

95.71 ± 2.14 97.18 ± 0.09 68.80 ± 0.08 99.49 ± 0.08 98.14 ± 0.75 92.88 ± 0.13 99.72 ± 0.26
1.100e−02 6.174e−02 1.302e−10 5.305e−01 8.453e−03 1.306e−01 9.163e−02

Advance dropout (Xie et al.,
2022)

97.14 ± 2.67 97.44 ± 0.08 68.79 ± 0.09 99.41 ± 0.09 98.66 ± 0.80 92.87 ± 0.14 99.84 ± 0.25
3.058e−01 1.193e−03 6.230e−10 2.252e−02 1.832e−01 1.064e−01 6.016e−01

GA-dropout (Chen et al., 2018) 94.64 ± 2.40 96.31 ± 0.13 68.05 ± 0.07 99.40 ± 0.15 97.86 ± 0.91 92.09 ± 0.63 97.96 ± 0.31
1.372e−03 1.229e−12 1.059e−18 6.824e−02 3.216e−03 3.806e−04 8.022e−13

DE-dropout (Chen et al., 2018) 92.86 ± 3.19 96.71 ± 0.32 68.20 ± 0.15 99.41 ± 0.07 97.86 ± 0.88 92.21 ± 0.50 97.96 ± 0.31
2.085e−04 6.623e−05 2.010e−13 1.097e−02 2.734e−03 2.133e−04 1.037e−12

GADropout 98.21 ± 1.79 97.27 ± 0.11 69.20 ± 0.06 99.51 ± 0.09 99.15 ± 0.78 92.98 ± 0.15 99.89 ± 0.16
(8 × 102) (8 × 104) (9.62 × 104) (3.26 × 105) (4 × 103) (5.46 × 104) (2.54 × 104)
Fig. 3. The 50th, 100th, 150th and 200th populations.
he experiment on deep neural network, all the experiments trained 200
pochs with a learning rate of 0.01, and all the experiments on Lenet
rain 300 Epochs with the learning rate of 0.1 and scaled down 0.1
imes at 150th and 225th. Experimental results are shown in Table 2.
s shown, the GADropout method achieves good results on small-scale
ata being applied to both MLP and convolutional neural networks.

.5. Performances on SVHN & CIFAR

In this section, GADropout was applied to the relevant experi-
ents of two classical convolutional neural networks. VGG16 and
esNet18 were selected for comparison of algorithm effectiveness.
hese two networks are currently the most widely-used convolutional
eural networks, which may to some extent explain the effectiveness
f GADropout method.

First, SVHN datasets were used, and six algorithms were selected

or comparison. For all methods, the batch size was set to 256 during

6

training. As shown in Table 3, GADropout performs only 0.03% less
than the best method on ResNet18, but 0.06% better than the best
method on VGG16.

In addition, experiments were conducted on the CIFAR-10 and
CIFAR-100 datasets, and twelve methods were used to compare with
GADropout. In this experiment, the batch size was set to 128. As
shown in Table 4, after the training process with ResNet18, GADropout
improved 0.11% and 0.12% over the best method on CIFAR-10 and
CIFAR-100 datasets, respectively. Compared with the best method,
VGG16 with GADropout improved 0.37% and 0.18% on CIFAR-10 and
CIFAR-100 datasets, respectively.

3.6. Performances on mini-Imagenet & Imagenet-32 × 32

To verify the effectiveness of the GADropout method on large
datasets, two subsets of the Imagenet dataset were selected. First, on
the mini-Imagenet dataset, the batch size was set to 256, and twelve



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504

t
s
n
w
i

Table 2
Classification accuracy (%) on MNIST & Fashion MNIST. The total number of evaluation for all of the comparison is 5.64 × 104.

MNIST Fashion MNIST

MLP Lenet MLP Lenet

No dropout 98.25 ± 0.09 98.84 ± 0.08 89.12 ± 0.07 89.58 ± 0.14
5.067e−14 8.019e−13 5.175e−19 1.382e−14

Standard dropout (Hinton et al., 2012) 98.49 ± 0.06 98.76 ± 0.14 89.37 ± 0.14 89.75 ± 0.23
9.381e−13 2.301e−10 6.116e−12 8.123e−10

Gaussian dropout (Srivastava et al., 2014) 98.47 ± 0.08 98.82 ± 0.18 89.38 ± 0.24 89.73 ± 0.11
7.477e−12 5.047e−08 3.429e−08 4.777e−15

Variational dropout (Kingma et al., 2015) 98.39 ± 0.15 98.69 ± 0.11 89.57 ± 0.10 89.76 ± 0.18
1.615e−09 8.976e−13 7.874e−12 2.077e−11

DropConnect (Wan et al., 2013) 98.48 ± 0.05 98.86 ± 0.03 89.57 ± 0.14 89.78 ± 0.13
1.579e−13 6.502e−17 1.388e−09 1.785e−13

Concrete dropout (Gal et al., 2017) 98.43 ± 0.12 98.75 ± 0.24 89.63 ± 0.15 89.77 ± 0.22
2.635e−10 4.457e−07 2.684e−08 5.937e−10

Fraternal dropout (Zolna et al., 2018) 98.37 ± 0.12 98.78 ± 0.06 89.44 ± 0.18 89.61 ± 0.22
4.543e−11 2.711e−15 1.775e−09 3.439e−11

Gradient dropout (Tseng et al., 2020) 98.55 ± 0.20 98.91 ± 0.04 89.82 ± 0.17 89.87 ± 0.10
7.363e−06 3.942e−15 1.555e−04 2.295e−14

Meta dropout (Lee et al., 2020) 98.69 ± 0.20 98.82 ± 0.10 89.71 ± 0.05 89.94 ± 0.09
6.888e−04 9.584e−12 9.099e−14 2.727e−14

Auto dropout (Pham and Le, 2021) 98.87 ± 0.05 99.01 ± 0.03 89.95 ± 0.13 90.35 ± 0.02
1.856e−03 4.609e−14 6.437e−03 4.100e−13

Advance dropout (Xie et al., 2022) 98.89 ± 0.08 99.02 ± 0.03 89.85 ± 0.11 90.44 ± 0.07
4.001e−02 7.848e−14 5.234e−06 2.955e−06

GA-dropout (Chen et al., 2018) 98.57 ± 0.12 98.73 ± 0.13 89.59 ± 0.09 90.01 ± 0.13
3.211e−08 3.281e−11 3.075e−12 4.315e−11

DE-dropout (Chen et al., 2018) 98.64 ± 0.09 98.63 ± 0.07 89.79 ± 0.06 90.05 ± 0.08
2.466e−08 2.979e−16 6.025e−11 1.147e−13

GADropout 98.96 ± 0.06 99.34 ± 0.04 90.08 ± 0.03 90.61 ± 0.04
w
v
s
r
1

4

H
t
c
p
a
p
s
t
e

t
m
w
p
l
p
f
f
t
a
t

Table 3
Classification accuracy (%) on SVHN dataset. The total number of evaluation for all of
the comparison is 6.87 × 104.

ResNet18 VGG16

No dropout 97.71 ± 0.21 97.92 ± 0.19
2.280e−03 1.620e−03

Standard dropout (Hinton et al., 2012) 97.89 ± 0.16 98.02 ± 0.23
1.130e−02 1.630e−02

Gaussian dropout (Srivastava et al., 2014) 97.87 ± 0.11 98.05 ± 0.15
1.320e−03 4.260e−03

Uniform dropout (Shen et al., 2018) 98.08 ± 0.03 98.10 ± 0.16
8.050e−02 1.410e−02

𝛽-Dropout (Liu et al., 2019) 98.04 ± 0.09 98.11 ± 0.09
7.250e−02 2.120e−03

Advanced dropout (Xie et al., 2022) 98.17 ± 0.08 98.29 ± 0.06
5.210e−01 2.170e−01

GADropout 98.14 ± 0.06 98.35 ± 0.08

methods were used for comparison in VGG16 and ResNet18. On the
mini-Imagenet dataset, all individuals in history were evaluated a total
of 4.5 × 104 times. As illustrated in Table 5, GADropout improves
accuracy by 0.67% and Top-5 accuracy by 0.45% for ResNet18. On
VGG16, the proposed method improves accuracy by 0.61% and Top-5
accuracy by 0.45%.

Finally, GADropout was used in the relevant experiments of
Imagenet-32 × 32 dataset, and the same comparison algorithm was
adopted. After 3.003 × 105 evaluations for all historical individuals,
he training stage was finally completed on ResNet18 and VGG16. As
hown in Table 6, GADropout achieves good results on both classical
eural networks. In the comparison experiment of ResNet18, compared
ith the existing best method, the accuracy of the proposed method

s improved by 1.13%, and the accuracy of Top-5 is improved by
 o

7

0.27%. In the comparison experiment of VGG16, the accuracy and Top-
5 accuracy of the proposed algorithm on the dataset are better than the
existing best method by 0.69% and 0.2% respectively.

On the Imagenet-32 × 32 dataset, the training time of each epoch
as compared. As shown in Table 6, GADropout needs to perform
erification on the verification set before and after training each epoch,
o the training time is affected by calculation efficiency and data
eading efficiency, which leads to the algorithm spending an additional
0%–20% of the original training time.

. Conclusion

Deep neural network performs very well in classification tasks.
owever, the phenomenon of over-fitting is very likely to appear in

he training process. The existing dropout method cannot automati-
ally adjust the deactivation probability of each neuron. Therefore, we
roposed an improved dropout technique that uses an evolutionary
pproach to guide the process of random neuron inactivation. In the
rocess of population iteration, we used a multi-objective optimisation
trategy to control and select the searched probabilities. In addition
o a genetic algorithm, this method integrates the training stage and
valuation process, thus ensuring no increase in time complexity.

The proposed method achieves good results on popular classifica-
ion datasets and various sizes of data. Compared to existing dropout
ethods, GADropout can significantly improve the accuracy of the net-
ork for classification tasks. Our results demonstrate that the dropout
robability has a variation pattern in the process of population evo-
ution. In future work, understanding and proving the basis of this
henomenon will be very meaningful in better explaining dropout’s ef-
ectiveness. In our experiments, we used generic popular architectures
or computer vision. Future work will include an extension of GADroput
o larger modern structures, including, for example, attention networks
nd vision transform networks. In addition, we plan to further improve
he modelling of the optimisation problem by defining more meaningful

bjectives.



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504
Table 4
Classification accuracy (%) on CIFAR-10 & CIFAR-100. The total number of evaluation for all of the comparison is 9.39 × 104.

CIFAR-10 CIFAR-100

ResNet18 VGG16 ResNet18 VGG16

No dropout 94.83 ± 0.21 93.86 ± 0.13 76.44 ± 0.23 73.62 ± 0.24
3.390e−05 1.740e−06 7.620e−07 9.120e−07

Standard dropout (Hinton et al., 2012) 94.84 ± 0.23 93.81 ± 0.08 76.67 ± 0.04 73.77 ± 0.16
6.890e−05 6.670e−08 2.450e−10 1.280e−07

Gaussian dropout (Srivastava et al., 2014) 95.02 ± 0.12 93.83 ± 0.10 76.62 ± 0.24 73.78 ± 0.22
5.920e−06 2.670e−07 2.830e−06 1.180e−06

Uniform dropout (Shen et al., 2018) 94.86 ± 0.16 93.82 ± 0.11 76.76 ± 0.07 73.76 ± 0.19
6.950e−06 4.250e−07 3.160e−09 3.820e−07

Concrete dropout (Gal et al., 2017) 94.99 ± 0.21 93.79 ± 0.11 76.48 ± 0.20 73.67 ± 0.06
1.640e−04 3.230e−07 3.470e−07 4.680e−10

Variational dropout (Kingma et al., 2015) 95.05 ± 0.20 93.81 ± 0.08 76.76 ± 0.20 73.98 ± 0.24
2.350e−04 6.670e−08 1.880e−06 7.340e−06

𝛽-Dropout (Liu et al., 2019) 95.07 ± 0.06 93.95 ± 0.15 76.79 ± 0.24 74.03 ± 0.05
2.300e−07 1.070e−05 8.280e−06 2.600e−09

Continuous dropout (Shen et al., 2018) 94.92 ± 0.24 93.86 ± 0.13 76.90 ± 0.12 73.85 ± 0.12
1.930e−04 1.740e−06 1.700e−07 3.430e−08

Information dropout (Achille and Soatto, 2018) 94.97 ± 0.15 93.88 ± 0.19 76.47 ± 0.12 73.70 ± 0.04
1.420e−05 2.500e−05 1.020e−08 1.900e−10

Gaussian Soft dropout (Xie et al., 2019) 95.09 ± 0.19 93.97 ± 0.12 77.22 ± 0.10 74.07 ± 0.07
2.750e−04 3.310e−06 1.140e−06 1.060e−08

Laplace Soft dropout (Xie et al., 2019) 95.03 ± 0.10 93.95 ± 0.09 77.13 ± 0.16 74.05 ± 0.24
2.140e−06 5.090e−07 8.020e−06 1.180e−05

Advanced dropout (Xie et al., 2022) 95.52 ± 0.03 94.28 ± 0.03 77.78 ± 0.04 74.94 ± 0.03
2.920e−03 1.740e−06 5.860e−03 7.420e−04

GADropout 95.63 ± 0.05 94.65 ± 0.06 77.90 ± 0.06 75.12 ± 0.07
Table 5
Classification accuracy (%) on mini-Imagenet dataset. The total number of evaluation for all of the comparison is 4.5 × 104.

ResNet18 VGG16

Top-1 Top-5 Top-1 Top-5

No dropout 71.80 91.16 76.35 93.05
Standard dropout (Hinton et al., 2012) 72.02 92.38 76.21 92.86
Gaussian dropout (Srivastava et al., 2014) 71.98 91.75 76.14 92.89
Uniform dropout (Shen et al., 2018) 72.07 91.99 76.84 93.39
Concrete dropout (Gal et al., 2017) 71.56 91.67 76.35 93.07
Variational dropout (Kingma et al., 2015) 72.06 92.04 76.56 93.32
𝛽-Dropout (Liu et al., 2019) 72.24 92.89 77.13 93.98
Continuous dropout (Shen et al., 2018) 72.33 93.47 76.71 93.67
Information dropout (Achille and Soatto, 2018) 71.90 92.01 76.44 93.12
Gaussian Soft dropout (Xie et al., 2019) 71.74 91.88 76.56 93.23
Laplace Soft dropout (Xie et al., 2019) 71.55 91.63 76.61 93.76
Advanced dropout (Xie et al., 2022) 72.89 93.56 77.35 94.11

GADropout 73.56 94.01 77.96 94.56
Table 6
Classification accuracy (%) on Imagenet-32 × 32 dataset. The total number of evaluation for all of the comparison is 3.003 × 105. Time is the
training seconds during each epoch.

ResNet18 VGG16

Top-1 Top-5 Time Top-1 Top-5 Time

No dropout 45.46 70.47 556 40.58 64.50 407
Standard dropout (Hinton et al., 2012) 45.72 70.73 572 41.26 64.14 412
Gaussian dropout (Srivastava et al., 2014) 45.00 69.74 580 41.33 64.22 438
Uniform dropout (Shen et al., 2018) 45.26 69.62 573 41.36 64.88 416
Concrete dropout (Gal et al., 2017) 45.75 70.55 565 41.37 64.33 426
Variational dropout (Kingma et al., 2015) 45.53 69.63 582 41.45 64.35 447
𝛽-Dropout (Liu et al., 2019) 45.09 69.73 697 41.51 64.27 606
Continuous dropout (Shen et al., 2018) 44.60 69.39 560 41.23 64.07 421
Information dropout (Achille and Soatto, 2018) 45.55 70.31 575 41.35 64.12 413
Gaussian Soft dropout (Xie et al., 2019) 46.33 71.04 587 41.69 64.59 419
Laplace Soft dropout (Xie et al., 2019) 46.31 71.14 583 41.57 65.45 426
Advanced dropout (Xie et al., 2022) 47.03 71.75 582 42.65 66.23 420

GADropout 48.16 72.02 642 43.34 66.43 483
8



P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was partially supported by the National Natural Sci-
ence Foundation of China (61876089, 61876185, 61902281), the Nat-
ural Science Foundation of Jiangsu Province, China (BK20141005)
and the Natural Science Foundation of the Jiangsu Higher Education
Institutions of China (14KJB520025).

References

Achille, A., Soatto, S., 2018. Information dropout: Learning optimal representations
through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40 (12),
2897–2905.

Ba, J., Frey, B., 2013. Adaptive dropout for training deep neural networks. In: Advances
in Neural Information Processing Systems, Vol. 26.

Chandra, A., Yao, X., 2006. Evolving hybrid ensembles of learning machines for better
generalisation. Neurocomputing 69 (7), 686–700.

Chen, T., Jia, W., Sun, Y., 2018. The improvement of dropout strategy based on two
evolutionary algorithms. In: 2018 IEEE International Conference on Robotics and
Biomimetics. pp. 814–819.

Choe, J., Lee, S., Shim, H., 2021. Attention-based dropout layer for weakly supervised
single object localization and semantic segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 43 (12), 4256–4271.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182–197.

Deb, K., Tiwari, S., 2008. Omni-optimizer: A generic evolutionary algorithm for single
and multi-objective optimization. European J. Oper. Res. 185 (3), 1062–1087.

DeVries, T., Taylor, G.W., 2017. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552.

Eiben, A.E., Smith, J.E., 2015. Introduction to Evolutionary Computing, second ed. In:
Natural Computing Series, Springer.

Gal, Y., Ghahramani, Z., 2016. A theoretically grounded application of dropout in
recurrent neural networks. In: Advances in Neural Information Processing Systems,
Vol. 29.

Gal, Y., Hron, J., Kendall, A., 2017. Concrete dropout. In: Advances in Neural
Information Processing Systems, Vol. 30.

Garbin, C., Zhu, X., Marques, O., 2020. Dropout vs. batch normalization: an empirical
study of their impact to deep learning. Multimedia Tools Appl. 79 (19–20),
12777–12815.

Ghiasi, G., Lin, T.-Y., Le, Q.V., 2018. DropBlock: A regularization method for con-
volutional networks. In: Advances in Neural Information Processing Systems, Vol.
31.

Guo, D., Wang, X., Gao, K., Jin, Y., Ding, J., Chai, T., 2022. Evolutionary optimization of
high-dimensional multiobjective and many-objective expensive problems assisted by
a dropout neural network. IEEE Trans. Syst. Man Cybern. Syst. 52 (4), 2084–2097.

Hayou, S., Ayed, F., 2021. Regularization in ResNet with stochastic depth. In: Advances
in Neural Information Processing Systems, Vol. 34. pp. 15464–15474.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Hou, S., Wang, Z., 2019. Weighted channel dropout for regularization of deep
convolutional neural network. Proc. AAAI Conf. Artif. Intell. 33 (01), 8425–8432.

Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q., 2016. Deep networks with
stochastic depth. In: European Conference on Computer Vision. pp. 646–661.

Kingma, D.P., Salimans, T., Welling, M., 2015. Variational dropout and the local
reparameterization trick. In: Advances in Neural Information Processing Systems,
Vol. 28.

Kokalis, C.-C.A., Tasakos, T., Kontargyri, V.T., Siolas, G., Gonos, I.F., 2020. Hydropho-
bicity classification of composite insulators based on convolutional neural networks.
Eng. Appl. Artif. Intell. 91, 103613.

Krogh, A., Hertz, J., 1991. A simple weight decay can improve generalization. In:

Advances in Neural Information Processing Systems, Vol. 4.

9

Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N.R., Goyal, A.,
Bengio, Y., Courville, A.C., Pal, C.J., 2017. Zoneout: Regularizing RNNs by
randomly preserving hidden activations. In: International Conference on Learning
Representations.

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2017. Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems, Vol. 30.

Lee, H.B., Nam, T., Yang, E., Hwang, S.J., 2020. Meta dropout: Learning to per-
turb latent features for generalization. In: International Conference on Learning
Representations.

Liu, L., Luo, Y., Shen, X., Sun, M., Li, B., 2019. 𝛽 -Dropout: A unified dropout. IEEE
Access 7, 36140–36153.

Loshchilov, I., Hutter, F., 2019. Decoupled weight decay regularization. In: International
Conference on Learning Representations.

Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E.D., Banzhaf, W., Boddeti, V.N.,
2021. Multiobjective evolutionary design of deep convolutional neural networks
for image classification. IEEE Trans. Evol. Comput. 25 (2), 277–291.

Ma, L., Ma, Y., Lin, Q., Ji, J., Coello, C.A.C., Gong, M., 2022. SNEGAN: Signed network
embedding by using generative adversarial nets. IEEE Trans. Emerg. Top. Comput.
Intell. 6 (1), 136–149.

Moon, T., Choi, H., Lee, H., Song, I., 2015. Rnndrop: A novel dropout for RNNs in ASR.
In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding. pp.
65–70.

Morerio, P., Cavazza, J., Volpi, R., Vidal, R., Murino, V., 2017. Curriculum dropout.
In: 2017 IEEE International Conference on Computer Vision. pp. 3564–3572.

Park, S., Kwak, N., 2017. Analysis on the dropout effect in convolutional neural
networks. In: Proceedings of the Asian Conference on Computer Vision. pp.
189–204.

Park, S., Park, J., Shin, S.-J., Moon, I.-C., 2018. Adversarial dropout for supervised
and semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

Park, S., Song, K., Ji, M., Lee, W., Moon, I.-C., 2019. Adversarial dropout for recurrent
neural networks. Proc. AAAI Conf. Artif. Intell. 33 (01), 4699–4706.

Pham, H., Le, Q.V., 2021. AutoDropout: Learning dropout patterns to regularize deep
networks. Proc. AAAI Conf. Artif. Intell. 35 (11), 9351–9359.

Rennie, S.J., Goel, V., Thomas, S., 2014. Annealed dropout training of deep networks.
In: 2014 IEEE Spoken Language Technology Workshop. pp. 159–164.

Saito, K., Ushiku, Y., Harada, T., Saenko, K., 2018. Adversarial dropout regularization.
In: International Conference on Learning Representations.

Salehinejad, H., Valaee, S., 2022. EDropout: Energy-based dropout and pruning of deep
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33 (10), 5279–5292.

Semeniuta, S., Severyn, A., Barth, E., 2016. Recurrent dropout without memory loss. In:
Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers. pp. 1757–1766.

Shen, X., Tian, X., Liu, T., Xu, F., Tao, D., 2018. Continuous dropout. IEEE Trans.
Neural Netw. Learn. Syst. 29 (9), 3926–3937.

Shi, B., Zhang, D., Dai, Q., Zhu, Z., Mu, Y., Wang, J., 2020. Informative dropout for
robust representation learning: A shape-bias perspective. In: Proceedings of the 37th
International Conference on Machine Learning, Vol. 119. pp. 8828–8839.

Singh, S., Hoiem, D., Forsyth, D., 2016. Swapout: Learning an ensemble of deep
architectures. In: Advances in Neural Information Processing Systems, Vol. 29.

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C., 2015. Efficient object
localization using convolutional networks. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition. pp. 648–656.

Tseng, H.-Y., Chen, Y.-W., Tsai, Y.-H., Liu, S., Lin, Y.-Y., Yang, M.-H., 2020. Regularizing
meta-learning via gradient dropout. In: Proceedings of the Asian Conference on
Computer Vision.

Valcarce, D., Landin, A., Parapar, J., Barreiro, A., 2019. Collaborative filtering em-
beddings for memory-based recommender systems. Eng. Appl. Artif. Intell. 85,
347–356.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R., 2013. Regularization of neural
networks using DropConnect. In: Proceedings of the 30th International Conference
on Machine Learning, Vol. 28. pp. 1058–1066.

Wang, S.I., Manning, C.D., 2013. Fast dropout training. In: International Conference on
Machine Learning. pp. 118–126.

Wu, H., Gu, X., 2015. Towards dropout training for convolutional neural networks.
Neural Netw. 71, 1–10.

Xie, J., Ma, Z., Lei, J., Zhang, G., Xue, J.-H., Tan, Z.-H., Guo, J., 2022. Advanced
dropout: A model-free methodology for Bayesian dropout optimization. IEEE Trans.
Pattern Anal. Mach. Intell. 44 (9), 4605–4625.

Xie, J., Ma, Z., Zhang, G., Xue, J.-H., Tan, Z.-H., Guo, J., 2019. Soft dropout and its
variational Bayes approximation. In: 2019 IEEE 29th International Workshop on
Machine Learning for Signal Processing. pp. 1–6.

http://refhub.elsevier.com/S0952-1976(23)00688-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb1
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb6
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb7
http://arxiv.org/abs/1708.04552
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb15
http://arxiv.org/abs/1207.0580
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb17
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb34
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb35
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb36
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb37
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb37
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb37
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb38
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb38
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb38
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb38
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb38
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb39
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb39
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb39
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb40
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb41
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb41
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb41
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb42
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb42
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb42
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb42
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb42
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb43
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb43
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb43
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb43
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb43
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb44
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb45
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb46
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb47
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb48
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb49
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb49
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb49
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb49
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb49
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb50
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb50


P. Jiang, Y. Xue and F. Neri Engineering Applications of Artificial Intelligence 124 (2023) 106504
Xue, Y., Cai, X., Neri, F., 2022a. A multi-objective evolutionary algorithm with interval
based initialization and self-adaptive crossover operator for large-scale feature
selection in classification. Appl. Soft Comput. 127, 109420.

Xue, Y., Jiang, P., Neri, F., Liang, J., 2021a. A multi-objective evolutionary approach
based on Graph-in-Graph for neural architecture search of convolutional neural
networks. Int. J. Neural Syst. 31 (09), 2150035.

Xue, Y., Tang, Y., Xu, X., Liang, J., Neri, F., 2022b. Multi-objective feature selection
with missing data in classification. IEEE Trans. Emerg. Top. Comput. Intell. 6 (2),
355–364.

Xue, Y., Tong, Y., Neri, F., 2022c. An ensemble of differential evolution and adam for
training feed-forward neural networks. Inform. Sci. 608, 453–471.

Xue, Y., Zhang, Q., Neri, F., 2021b. Self-adaptive particle swarm optimization-based
echo state network for time series prediction. Int. J. Neural Syst. 31 (12), 2150057.

Xue, Y., Zhu, H., Neri, F., 2021c. A self-adaptive multi-objective feature selection
approach for classification problems. Integr. Comput.-Aided Eng. 29 (1), 3–21.
10
Yin, L., Chen, L., Liu, D., Huang, X., Gao, F., 2021. Quantum deep reinforcement
learning for rotor side converter control of double-fed induction generator-based
wind turbines. Eng. Appl. Artif. Intell. 106, 104451.

Zhang, H., Jin, Y., Hao, K., 2022. Evolutionary search for complete neural network
architectures with partial weight sharing. IEEE Trans. Evol. Comput. 26 (5),
1072–1086.

Zhang, K., Wang, W., Lv, Z., Fan, Y., Song, Y., 2021. Computer vision detection of
foreign objects in coal processing using attention CNN. Eng. Appl. Artif. Intell.
102, 104242.

Zhou, Y., Yen, G.G., Yi, Z., 2021. A knee-guided evolutionary algorithm for compressing
deep neural networks. IEEE Trans. Cybern. 51 (3), 1626–1638.

Zhou, Y., Yen, G.G., Yi, Z., 2022. Evolutionary shallowing deep neural networks at
block levels. IEEE Trans. Neural Netw. Learn. Syst. 33 (9), 4635–4647.

Zolna, K., Arpit, D., Suhubdy, D., Bengio, Y., 2018. Fraternal dropout. In: International
Conference on Learning Representations.

http://refhub.elsevier.com/S0952-1976(23)00688-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb51
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb52
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb53
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb54
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb54
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb54
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb55
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb55
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb55
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb56
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb56
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb56
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb57
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb57
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb57
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb57
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb57
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb58
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb58
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb58
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb58
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb58
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb59
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb59
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb59
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb59
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb59
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb60
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb60
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb60
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb61
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb61
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb61
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb62
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb62
http://refhub.elsevier.com/S0952-1976(23)00688-7/sb62

	Continuously evolving dropout with multi-objective evolutionary optimisation
	Introduction
	Related Work: Dropout in linear layers
	Related Work: Dropout in convolutional layers
	Related Work: Adaptive dropout
	Motivation and proposal

	GADropout
	Encoding Scheme and Initialisation
	Multi-objective Optimisation
	Evolutionary Framework

	Experiments and Analysis
	Datasets
	Parameter Setting
	Performances on UCI Datasets
	Performances on MNIST and Fashion MNIST
	Performances on SVHN & CIFAR
	Performances on mini-Imagenet & Imagenet-32 × 32

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


