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Abstract. Neural architecture search (NAS) is an increasingly popularmethod for
the automatic design of neural networks. Although promising, NAS is often asso-
ciated with a significant computational cost. Surrogate models, which predict the
performance of candidate networks without training them, are thus used to speed
up NAS calculations. Since surrogate models must be trained, their performance
depends on the dataset of labelled candidate architectures. The generation of these
samples can be time-consuming as it requires the training of an architecture. The
present paper proposes an inexpensive way of generating training data for the
surrogate model. Specifically, the proposed algorithm makes use of isomorphism
to obtain more training data for the graph-based encoding. We propose an isomor-
phic training which combines the use of the Mean Squared Error (MSE) with a
novel isomorphic loss function. Then, we propose an isomorphic score to predict
the performance of candidate architectures. The proposed isomorphic-based sur-
rogate is integrated within an evolutionary framework for NAS. Numerical exper-
iments are performed on NAS-Bench101 and NAS-Bench201 search spaces. The
experimental results demonstrate that the proposed Isomorphic Training and Pre-
diction Evolutionary Neural Architecture Search (ITP-ENAS) algorithm can iden-
tify architectures with better performance than other state-of-the-art algorithms,
despite training only 424 architectures.

Keywords: Neural architecture search · Evolutionary algorithm · Surrogate
model · Isomorphic graphs · Convolutional neural networks

1 Introduction

Convolutional neural networks (CNNs) are classical deep learning models, with emerg-
ing architectures like ResNet andMobileNet. Despite their effectiveness in tasks such as
image classification, object detection, and semantic segmentation, designing CNN struc-
tures remains challenging, leading to the adoption of neural architecture search (NAS)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D.-S. Huang et al. (Eds.): ICIC 2024, LNCS 14863, pp. 191–203, 2024.
https://doi.org/10.1007/978-981-97-5581-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5581-3_16&domain=pdf
https://doi.org/10.1007/978-981-97-5581-3_16


192 P. Jiang et al.

methods. Among NAS methods, Evolutionary NAS (ENAS) field has attracted signifi-
cant interest. Real et al. achieved superior results using a large-scale mutation method
[2]. However, evolutionary algorithms introduce significant computational overhead,
with each individual requiring evaluation through training to obtain fitness values, see
e.g., [4].

Several strategies aim to mitigate the time consumption of ENAS. Among these,
surrogate models have proven to be a viable option within evolutionary frameworks.
Surrogate models expedite evaluations by swiftly obtaining fitness values through pre-
diction. A well-constructed surrogate model can substantially decrease ENAS time
requirements. For instance, Sun et al. employed an end-to-end prediction approach for
AECNN [5]. Lu et al. used a supernet with an adaptive switchable surrogate model to
further diminish search time [6]. However, existing surrogate models heavily depend on
the quantity and quality of the training dataset, especially regarding information about
the trained architecture. Many surrogate models exhibit unreliable prediction accuracy
when trained with limited data [7, 8]. Current ENAS research faces a trade-off. Sur-
rogate models require more data for effective training and predictions, but generating
this data is computationally expensive, potentially undermining the surrogate approach’s
advantages.

To overcome the challenge of insufficient architecture information for training sur-
rogate models, researchers have developed data augmentation methods to generate
more labelled architectures without additional network training. One approach involves
exploiting graph structures within search spaces. Some studies have used genetic algo-
rithms to explore network architectures represented by adjacency matrices of graphs
[9]. These encoding strategies enable the generation of numerous network represen-
tations through graph isomorphism. Liu et al. leverage the NASBench-101 encoding
space by swapping node order to enrich the surrogate model’s dataset [11], improving
prediction accuracy without additional computational costs. However, this approach still
underutilises evaluated architecture information.

In this paper, we introduce the Isomorphic Training and Prediction-assisted
Evolutionary-basedNAS (ITP-ENAS) approach. It leverages isomorphic architectures in
the graph encoding space to expand the dataset, enhancing training and prediction perfor-
mance to maximize information utilization. Specifically, ITP-ENAS swaps node orders
within evaluated architectures to generate new training data without additional overhead,
maintaining the same classification accuracy information. Additionally, we introduce an
isomorphic loss to extract information between isomorphic networks, improving model
prediction. During the search process, fitness values are assigned based on isomorphic
predictions. Applied to NASBench-101 and NASBench-201, this approach significantly
enhances prediction ability and performswellwith limited data.Moreover, it can be com-
bined with any neural network-based neural predictor, enhancing surrogate prediction
performance through isomorphic loss and prediction embedding.
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The remainder of this paper is organized as follows: the implementation details of
the proposed ITP-ENAS are introduced in Sect. 2. Sect. 3 presents experimental results
to demonstrate the performance of ITP-ENAS. Finally, Sect. 4 comprises the conclusion
and outlines future works.

2 IsomorphicTraining andPrediction-AssistedEvolutionary-Based
NAS

2.1 Encoding

In ITP-ENAS, considering the distinct features of the evolutionary algorithm and the
surrogate model, we propose the combined use of two encoding strategies, namely
evolutionary encoding and surrogate encoding, respectively, see Fig. 1 as an example on
NASBench-101.

For the evolutionary encoding part, this study utilized the original encodings from
EvoXBench for the two search spaces, NASBench-101 andNASBench-201 [12]. Specif-
ically, the network architectures in NASBench-101 were represented as graphs using
adjacency matrices. Each element mij within the matrix indicates whether the i − th
node and the j− th node are connected (1) or not (0). The matrix size corresponds to the
number of operation nodes in the graph, considering inputs and outputs as two distinct
nodes for this search space, resulting in a size of 7. The node numbering is based on the
order in which the modules are used, with inputs in the first rows and columns and out-
puts in the last rows and columns. Numerical values are assigned to represent the type of
operation, resulting in a fully digitized encoding denoted asO. The upper triangular part
of the adjacency matrix is flattened into a one-dimensional vector and spliced in front
of the type vector, as shown in Fig. 1. In the case of NASBench-201, only 6 operation
locations were chosen, and each architecture is encoded with 6 bits, denoted as {0, 1, 2,
3, 4} to represent the type of operation.

For surrogate encoding,we introduce a novel representation suitable for architectures
in both NASBench-101 and NASBench-201 benchmarks. Using a matrix denoted asM ,
we establish the adjacency matrix for NASBench-101, while a transformation from the
Homogeneous Architecture Augmentation for Neural Predictor (HAAP) package [11]
ensures compatibility with NASBench-201 architectures. After normalising the graph
representation to NASBench-101 logic, we create the adjacency matrix M , generating
isomorphic graphs illustrated in Fig. 1. Each matrix elementmij indicates the connection
between the i − th and the j − th nodes. Unlike the evolutionary representation, ‘1’s are
allowed in the lower triangular part of M . Operation encoding is transformed using
the One-hot method to produce the operation type matrix O. Finally, the flattened and
spliced adjacency and operationmatrices form a one-dimensional vector I . It’s important
to note that invalid operations, such as those without inputs or outputs in NASBench-101
individuals (see Conv 1 × 1 highlighted in yellow in Fig. 1), are retained to maintain the
number of nodes during evolution. However, prior to surrogate encoding, the positions
of invalid operations in the matrix are set to 0, and their order is adjusted to precede the
outputs, ensuring consistency. The missing operation types are encoded using the null
vector in the One-hot encoding scheme.
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a) Representation with adjacency matrix and               b) Evolutionary encoding

c) Surrogate encoding

Fig. 1. Example of the evolutionary encoding and surrogate encoding for a graph-base network
architecture in NASBench-101.

2.2 Isomorphic Predictor

In the surrogate model phase, we propose a novel training and prediction method based
on isomorphic graphs, as illustrated in Fig. 2. Initially, using the filled adjacency matrix
from Fig. 1, we consider all possible column rearrangements for the nodes in the middle
(excluding inputs and outputs) to generate isomorphic graphs or surrogate encodings.
Consequently, a graph containing S internal nodes (excluding inputs and outputs) can
yieldGiso = {G1,G2, . . . ,GA},whereA = S! represents the total number of isomorphic
graphs. To address potential redundancy in the original data where some isomorphic
graphs may produce the same isomorphic groups, we retain only one group from Giso

generated from individual graphs in the history records, ensuring that each graph group
has an equal amount of isomorphic data to prevent data imbalance.

Once the set of S! isomorphic networks have been generated, their training process
ensues. The use of a classical loss function such as the Mean Squared Error (MSE) is
inadequate in this case as MSE could only use one network at the time as an input.
Conversely, we make use of the isomorphic nature of the generated architecture and
design around this fact a loss function, namely isomorphic loss, that can handle multiple
architectures at once, whose details are described in the following paragraph.
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……

Fig. 2. The process method of isomorphic graphs generation, surrogate encoding, isomorphic
training and prediction.

By applying a flattening operation, we obtain the corresponding surrogate encoding
vectors Iiso = {I1, I2, . . . , IA} for graphs in one Giso. All graphs in the history data are
then used for the training. To better distinguish the isomorphic graph groups generated
by different graphs, we add an index to I , using Iij to represent the j − th isomorphic
graph in the i − th Iiso temporarily. The training data is represented by the formula:

DMSE = {I1,1, . . . , I1,A, . . . , IH ′,1, . . . , IH ′,A} (1)

Diso = {
Iiso1 , . . . , IisoA

} = {(I1,1, . . . , I1,A), . . . , (IH ′,1, . . . , IH ′,A)} (2)

in which H ′ is the current length of the architecture history, DMSE is used for training
withMSE loss function and Diso is used for training with isomorphic loss function. The
size of batch data is set as B, so in each batch we select B samples from DMSE and
λ = max(1,

⌊ B
A

⌋
) samples from Diso. The predicted value of DMSE is yi′ while the true

label is yi, so we can get the MSE loss value as the formula:

L1 = 1

B

∑B

i=1
(yi − y′

i)
2 (3)

To focus more on the inner relationships between pairs of isomorphic graphs, the
proposed isomorphic loss is represented by the formula:

L2 = 1

λ

∑λ

i=1

2

A(A − 1)

∑A
j−2

j∑

k=1

(y′
i,j − y′

i,k)
2 (4)

in which yi,j′ is the predict value of the isomorphic graph Disoi . Therefore, the final loss
function for this batch data is as L = L1 + L2. After the forward progress of the loss
value, β‖W‖22 is added into the loss value as regularization where W is the weights of
surrogate model and β is a hyper-parameter to control the strength of the regularization.
The final loss value is used for back-propagation and model update.

In the phase of using the surrogate model for prediction, for an individual G to be
predicted, the same steps are first adopted to generate an encoding for A isomorphic
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representations I1, I2, . . . , IA. These are then used as the inputs of the surrogate model
to obtain y1′, . . . yA′. In the end, the final prediction value for this individual employs
the mean of the A prediction values, which is noted as isomorphic mean in Fig. 2. The
prediction process for one individual G is represented by the formula:

Pred(G) = 1

A
∑A

i=1
Model(Iiso) (5)

where Iiso is the corresponding encodings of isomorphic graph group for G.

2.3 Evolutionary Framework

The comprehensive workflow of the entire search methodology is delineated in Fig. 3.
As illustrated, the proposed ITP-ENAS is partitioned into two distinct blocks enveloped
by dotted rectangles in Fig. 3. The lower block outlines the procedures for constructing
a surrogate predictor, as elucidated in Sect. 2.2, while the upper block delineates the
Neural Architecture Search (NAS) operations orchestrated by the evolutionary frame-
work. Moreover, for a more intricate understanding of the algorithmic operations, we
have presented the pseudocode of the proposed ITP-ENAS in Algorithm 1.

Initially, P individuals, denoted as candidate architectures, are randomly sampled.
From this pool of P candidates, Ninit individuals undergo evaluation, meaning each
architecture Ii is trained to acquire the corresponding fitness value yi. The values of each
trained architecture are recorded in an archive, referred to as history, which is utilised for
training the surrogate model, as detailed in Sect. 2.2. Subsequently, the trained surrogate
model predicts the fitness value of all P individuals, including theNinit that were trained,
ensuring comparability across the entire population. At each generation, Q offspring
architectures are generated through uniform crossover and random mutation, with prob-
abilities pc and pm respectively. Parents are selected via tournament selection with a
tournament size of 2. Every T generations, provided the history archive has not reached
its maximum capacity H , the top K individuals from the offspring population undergo
training, and the history archive is updated accordingly. The surrogate model is then
re-trained, and the entire population is re-estimated using the updated surrogate model.
Parents and offspring are merged to select P elite individuals (candidate architectures
with the highest predicted performance) for the subsequent generation. Finally, individ-
uals with the best fitness values from the final generation are chosen for real evaluation
on the test set, yielding the final architecture and test accuracy.
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Fig. 3. The framework of ITP-ENAS, consisting with a GA-like search strategy and the
isomorphic training and prediction progress.

3 Experimental Results

To evaluate the performance of the proposed ITP-ENAS and compare it against state-of-
the-art algorithms, we selected NASBench-101 and NASBench-201. Each experiment
was conducted five times, and the mean and standard deviation of each experiment were
reported.

3.1 Performance-Based Comparison

We employed a population size of P = 250 individuals and selected Ninit = 100 for
the initial surrogate training. The number of offspring architectures is set to Q = 500,
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Table 1. Performance of the searched networks on NASBench-101

Methods #Queries Accuracy
(mean ± std)

Accuracy
(best)

Rank (%)

NAR (statistics) [7] 4236 94.07 ± 0.09 94.19 0.0054

NAR (random) [7] 4236 94.06 ± 0.04 94.10 0.0061

Peephole∗ [13] 1000 93.41 ± 0.34 – 1.6387

E2EPP [5] 1000 93.77 ± 0.13 – 0.1445

SSANA [14] 1000 94.01 ± 0.12 – 0.0111

HAAP [11] 1000 94.09 ± 0.11 – 0.0038

NAO∗ [15] 1000 – 93.74 0.1900+

RFGIAug [16] 424 – 94.23 0.0005+

RFGIAug [16] 1000 – 94.20 0.0009+

MbML-NAS(GB) [17] 860 93.26 ± 0.01 – 3.0466

HybridNAS [18] 250 – 94.10 0.0061+

HybridNAS [18] 400 – 94.17 0.0017+

GenNAS-N [19] 500 93.92 ± 0.004 – 0.0321

BANANAS∗ [20] 500 – 94.08 0.0047+

ReNAS [8] 423 93.95 ± 0.11 – 0.0222

CTNAS [21] 423 93.92 ± 0.18 94.22 0.0321

Random Search∗ [21] 423 89.31 ± 3.92 93.46 71.2759

RegressionNAS∗ [21] 423 89.51 ± 4.94 93.65 68.6082

ITP-ENAS (Ours) 424 94.18 ± 0.001 94.23 0.0012 (0.0005+)

Oracle N/A N/A 94.32 N/A

and every T = 3 generations, K = 50 individuals are chosen for real evaluation. The
maximum capacity of the history archive is set toH = 424. The crossover and mutation
probabilities are configured with pc = 0.5 and pm = 0.1.

Table 1presents ITP-ENASperformance results onNASBench-101, comparing them
with 29 other algorithms, including NASmethods with and without surrogate assistance.
Methods denotedwith ‘*’ were not originally run onNASBench-101 but have since been
applied to this search space in subsequent research. ‘#Queries’ indicates the number
of trained candidate architectures, serving as a measure of computational cost. ‘Rank
(%)’ denotes the percentage rank based on mean accuracy within the search space,
with ‘+’ indicating the best result used for rank calculation in the absence of mean
accuracy. Our method sets a new state-of-the-art for this space, achieving the highest
average task accuracy with minimal standard deviation across 5 experiments, indicating
its stable search capability. Although it didn’t discover the best architecture in terms of
test accuracy, ITP-ENAS still found an architecture with 94.23% accuracy, surpassing
the best validation accuracy among all considered NAS methods. The average accuracy
over 5 trials is 94.18%, outperforming other state-of-the-art methods.
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Table 2 presents results for the NASBench-201 search space. In this case, we setH =
100, Ninit = 30, K = 30, and T = 5, with all other parameters consistent with those for
NASBench-101. We compare our method with 20 others. ITP-ENAS achieves superior
performance when training over 1% of the search space, significantly outperforming
other state-of-the-art methods. When using less than 1% of the search space, we still
achieve the best results on CIFAR-10 and ImageNet-16-120 but observe slightly inferior
performance compared to some methods on CIFAR-100.

3.2 Comparison of Surrogate Model

To demonstrate the effectiveness of the surrogate model in ITP-ENAS, we compared its
predictive ability with 10 competitor algorithms onNASBench-101, as shown in Table 3.
We randomly sampled #Querys architectures and trained the surrogate model using
validation accuracy as the label.We thenpredicted the accuracyof 5000newarchitectures
and calculated the Kendall’s Tau between the predicted and actual values. Our method
achieved the highest prediction accuracy using only 424 #Querys, approximately 0.1%of
the search space. The only method outperforming ITP-ENASwas HAAP, but it required
1,000 #Querys, over twice the computational budget of ITP-ENAS.

Table 3. Kendall’s Tau correlation index between the test ground-truth and surrogate ranking,
and number of queries to train the surrogate models on the NASBench-101 dataset.

Methods Kendall’s Tau #Queries

RegressionNAS∗ [21] 0.430 423

NAO∗ [15] 0.6550 423

Peephole [13] 0.4556 424

Peephole [13] 0.4373 ± 0.0112 1000

E2EPP [5] 0.5038 424

E2EPP [5] 0.5705 ± 0.0082 1000

HAAP [11] 0.7010 ± 0.0022 424

HAAP [11] 0.7126 ± 0.0024 1000

NPNAS [29] 0.6945 424

SSANA [14] 0.6541 ± 0.0078 1000

ReNAS [8] 0.6574 424

ITP-ENAS (Ours) 0.7084 ± 0.0077 424

4 Conclusion

The present paper proposes a novel surrogate model for NAS, with training augmented
by the use of isomorphic graphs devised froma candidate architecture.Adomain-specific
isomorphic loss is also formulated to perform training combined with a standard MSE.
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This method significantly expands the training dataset of the surrogate model, enhancing
its prediction performance. Its benefit derives from the utilisation of evaluated individuals
to generate new training data by changing the order of internal nodes without any addi-
tional overhead. Experimental results carried out on NASBench-101 and NASBench-
201 display outstanding results for NAS that uses only 424 actual fitness evaluations and
establishes a new state-of-the-art for both search spaces. This method can be applied to
any neural-network-based neural predictor and appears promising in conjunction with
the use of random forest. Further investigations include the study of the suitability of
isomorphic data for various machine learning models.
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