
August 16, 2021 15:51 2150035

International Journal of Neural Systems, Vol. 31, No. 9 (2021) 2150035 (17 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129065721500350

A Multi-Objective Evolutionary Approach Based
on Graph-in-Graph for Neural Architecture Search

of Convolutional Neural Networks

Yu Xue
School of Computer and Software

Nanjing University of Information Science and Technology
Nanjing, P. R. China

Engineering Research Center of Digital Forensics
Ministry of Education

Nanjing University of Information Science and Technology
Nanjing, P. R. China
xueyu@nuist.edu.cn

Pengcheng Jiang
School of Computer and Software

Nanjing University of Information Science and Technology
Nanjing, P. R. China
pcjiang@nuist.edu.cn

Ferrante Neri∗

COL Laboratory, School of Computer Science
University of Nottingham, Nottingham, UK

ferrante.neri@nottingham.ac.uk

Jiayu Liang
Tianjin Key Laboratory of Autonomous Intelligent Technology and System

Tiangong University, Tianjin, P. .R. China
yyliang2012@hotmail.com

Received 30 May 2021
Accepted 31 May 2021

Published Online 24 July 2021

With the development of deep learning, the design of an appropriate network structure becomes funda-
mental. In recent years, the successful practice of Neural Architecture Search (NAS) has indicated that
an automated design of the network structure can efficiently replace the design performed by human
experts. Most NAS algorithms make the assumption that the overall structure of the network is linear
and focus solely on accuracy to assess the performance of candidate networks. This paper introduces
a novel NAS algorithm based on a multi-objective modeling of the network design problem to design
accurate Convolutional Neural Networks (CNNs) with a small structure. The proposed algorithm makes
use of a graph-based representation of the solutions which enables a high flexibility in the automatic
design. Furthermore, the proposed algorithm includes novel ad-hoc crossover and mutation operators.
We also propose a mechanism to accelerate the evaluation of the candidate solutions. Experimental
results demonstrate that the proposed NAS approach can design accurate neural networks with limited
size.

Keywords: Deep learning; neural architecture search; multi-objective optimization; genetic algorithm.

∗Corresponding author.

2150035-1

https://dx.doi.org/10.1142/S0129065721500350

August 16, 2021 15:51 2150035

Y. Xue et al.

1. Introduction

Convolutional neural networks (CNNs) have
achieved remarkable results in solving many prob-
lems, such as image classification16 and image
segmentation.40 CNNs are very efficient at obtain-
ing features from 1D sequences of data, 2D images,
and 3D images. The features extracted from 1D
sequences of sound data by 1D CNNs can be
used to extract voiceprint features.48,96 The features
extracted from 2D image data by CNN can be used
for image content recognition, prediction, and seg-
mentation. The features in 3D space in 3D image
data (mostly medical image data) can be extracted
by 3D convolution kernels, which is very useful in
predicting diseases and identifying lesions.34,35 In
addition, video data with time attributes can also
be classified by 3D CNNs.21,73

Among the plethora of real-world applications
of CNNs, some modern examples representing the
state-of-the-art in the field of neural systems are
to analyze the electroencephalogram signals to diag-
nose seizures2,42,46 or depression.3 A neural system
based on multiple CNNs is proposed in Ref. 52
to control epileptic seizures. Other studies propose
CNNs to diagnose epilepsy in infants7 and chil-
dren43 by classifying electroencephalogram signals.
CNNs have been also successfully used to classify
medical images to diagnose Parkinson’s disease12,54

and detect pupils.72 Another popular application
domain for CNNs is civil engineering. Some exam-
ples of application include damage detection in con-
crete structures39 and roads.53 Some other examples
are about vibration-based structural state identifica-
tion95 and effect of wind on structures.59 In addition,
CNNs can be combined with other technologies to
be applied in more fields. In Ref. 56, CNNs are com-
bined with Long Short-Term Memory to accurately
predict the remaining useful life of components, thus
helping to make an optimal decision for maintenance
management.

There have been many classical network struc-
tures, such as AlexNet,36 VGG,74 GoogLeNet,84

Inception-V4,83 Inception-ResNet,83 ResNet,31

DenseNet,33 etc., which appear to perform well in
image classification and image segmentation. How-
ever, due to high complexity, it is impractical to
use these CNNs on mobile platforms since they
would require an excessive amount of computational

resources thus leading to an unreasonable waiting
time, memory overflow, and high-energy consump-
tion. Therefore, some new lightweight network struc-
tures for mobile platforms have been proposed, such
as MobileNet,68 ShuffelNet,51 MnasNet,85 Efficient-
Net,86 Xception,19 etc. All the network structures
mentioned above are the result of (human) expert
design.

In recent years, Neural Architecture Search
(NAS) methods,17 that automatically search the net-
work architectures, are progressively becoming more
popular to design CNNs. Most NAS methods are to
search the blocks or cells which are consist of convo-
lution kernels with different sizes (such as 3×3, 5×5,
etc.) and the position of pool layers.50,80,82 More-
over, in MUXConv49 and ShuffleNet,51 it is pointed
out that the generalization performance of the net-
work can be improved by channel multiplexing, spa-
tial multiplexing, and channel shuffling, and then the
accuracy of recognition can be improved. The major-
ity of the NAS methods in the literature perform the
automatic design by using accuracy as the sole objec-
tive of the targets. However, operational efficiency is
also an extremely important aspect of the function-
ing of the network, especially in mobile applications.

In order to simultaneously address accuracy and
computational cost, unlike the other studies in the
literature, we propose an encoding mechanism with
multi-objective evaluate mechanism of the problem
where besides the accuracy of the CNN also the num-
ber of network parameters is taken into considera-
tion.65,66,69,70,75,88

Existing NAS methods design and limit the
search space and search domain to reduce the time
complexity of the optimization problem. An usual
strategy consists of defining some building blocks
which are defined by a human expert. This study
proposes a graph-based flexible representation that
supports a higher level of automatism of the design
process. Furthermore, the proposed method relates
to the concept of regularized evolutionary algo-
rithm62,67 in that the approaches aim at reducing
the computational overhead (e.g. memory employ-
ment) by performing an action on the optimization
algorithm.

The remainder of this paper is organized in the
following way. Section 2 provides the background
about NAS methods, encoding mechanism and eval-
uation of candidate network architectures. Section 3

2150035-2

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

provides the details of the proposed NAS method.
Section 4 provides the numerical results of this study.

2. Related Work: Neural Architecture
Search

The majority of NAS methods can be categorized
according to their search logic:

• Gradient-based methods15,47,92;
• Reinforcement Learning (RL)9,28,98;
• Evolutionary Algorithms (EAs).50,63,79,82,91

This list does not mean to be exhaustive since
other methods not belonging to any of the categories
above exist, such as Monte Carlo Tree search.90 The
various NAS methods belonging to each category
above present advantages and disadvantages. Specif-
ically, RL-based algorithms require a large compu-
tational time to perform the automatic design, even
on median-scale datasets, such as Cifar-10 and Cifar-
100.37 Unlike RL-based algorithms, gradient-based
algorithms are usually very fast. Besides, their search
logic leads to obtaining a local optimum problem
which may have a much poorer performance than the
desired optimal design. Moreover, the gradient-based
search algorithm needs to construct a supernetwork
in advance, which should contain as much search
space as possible. The construction of this supernet-
work requires substantial human intervention of an
expert, see Refs. 15 and 25. Although EAs are not
theoretically guaranteed to converge to the global
optimum of problem, they are able to overcome the
local optima. Also, they do not require a supernet-
work. Thus, EAs are often considered a viable com-
promise for NAS since they are relatively fast and
can be applied to NAS without human intervention
or prior knowledge of the problem. One pioneering
example is in Ref. 94. It is worthwhile remarking
that there exist other search strategies integrated in
NAS methods such as Refs. 18, 55, and 57.

This paper focuses on EAs for NAS. In the follow-
ing sections, some context is provided around the two
major challenges of this approach: encoding mecha-
nism and evaluation of the candidate solutions.

2.1. Encoding of NAS

The encoding of candidate network architectures for
NAS methods are broadly divided into two cat-
egories38: direct encoding and indirect encoding.

Indirect encoding was often used in early works
on NAS usually referred to as Neuroevolution, see
Ref. 71, which is similar to NAS. Neuroevolution
uses evolutionary computation to optimize the struc-
ture and parameters of neural networks at the same
times,1,4,26,27,30 and many researchers still work on
it.8,32,64,76,77 However, due to the limitations of
equipment at that time, the neuroevolution can only
be performed on small networks. Furthermore, due
to the very large number of parameters in fully con-
nected networks, direct encoding cannot be used to
represent the whole network. Therefore, a lot of effort
is made to find simple ways (i.e. indirect encoding) to
represent the connections and weight parameters of
neurons. Thus, indirect encoding is a popular strat-
egy to simplify the search space. These search pur-
poses determine that search space is difficult to rep-
resent with direct encoding, so indirect encoding is
needed to simplify the encoding and early researchers
used indirect encoding to represent individuals.

In recent years, most of the NAS studies have
been conducted on neural networks that albeit com-
plex, can be naturally schematized as interconnected
blocks. This is the case, besides the CNNs, of Gen-
erative Adversarial Networks (GANs),28 and Recur-
rent Neural Networks (RNNs).47 For networks of
these types, direct encoding is an easy and natu-
ral option. For example, CNNs contain convolution
blocks, pooling blocks, batch normalization oper-
ations, and sometimes activation functions. These
blocks are often represented by a few parameters.
Convolution blocks can be fully represented by the
number of convolution cores, the size of the convolu-
tion cores, stride, padding, dilation, and groups (in
fact, some parameters can be directly ignored based
on the actual search strategy and purpose). In most
cases, pooling blocks, batch normalization opera-
tions, and activation functions do not even require
parameters for special representations, and they just
need the position in the structure to represent the
modules.

For each block’s position in the structure, there
exist two encoding mechanisms:

• linear structure,81 that is the sequential (linear)
arrangement of all blocks or units composed of
blocks;

• graph structure,91 that is a planar (graph)
arrangement of interconnected blocks.

2150035-3

August 16, 2021 15:51 2150035

Y. Xue et al.

Although formally a linear structure is a spe-
cial graph structure (a sequence is a special graph),
we emphasize the distinction since the two encoding
mechanisms correspond to two significantly different
implementations.

Adjacency matrices are better suited for dense
graph structures,58 since sparse structures can waste
a lot of space in adjacency matrices. Sparse struc-
tures are better represented by adjacency tables (or
adjacency lists). While adjacency matrices are matri-
ces of “0” and “1” to indicate connection or with-
out connection between nodes, adjacency tables are
lists that indicate the for each node which nodes are
linked to it. The latter allows a compact representa-
tion of large sparse networks.

The main advantage of a linear structure is
its simplicity compared to that of graph structure.
Besides, linear structures cannot represent all the
networks. In some cases, like the example in Fig. 1, a
linear structure would yield an ambiguous represen-
tation of a neural network.

2.2. Evaluation of NAS

To evaluate a candidate structure, the general prac-
tice is to train the network and calculate its accuracy,
see Ref. 80.

Since the training time of the network is very
time-consuming, there are many ways to reduce the
total time of the evaluation phase. There are two
ways to reduce the total time: foresight and early
closure. Foresight methods make use of models to
predict the performance of the training network.
Some researchers use the performance during train-
ing to predict the future performance. For exam-
ple, MetaQNN10 gives the first 25% of the histori-
cal data of the Stochastic Gradient Descent (SGD)

Fig. 1. (Color online) An example of architecture that
cannot be represented by a linear structure. Blue blocks
are modules in CNNs. This architecture has two skip con-
nections, so it cannot be represented by a linear structure.

training curve to the time series model for predic-
tion and estimates the final accuracy of the network
structure. Some researchers use other models, such
as random forest, Bayes methods or other models
to predict the possible representations of particular
network architectures. The reason why they use this
method is that the structures searched for by the
same NAS method often have a great deal of simi-
larity, and when encoded, it is possible to work out
whether the network is good or not from the encod-
ing directly. For instance, PNAS45 uses the model
to predict the top-1 accuracy of candidate networks.
Reference 78 proposes an end-to-end offline perfor-
mance predictor based on the random forest to accel-
erate the evaluation.

Early closure is another way to reduce the total
time of the evaluation phase. This type of approach
reduces overall time through targeted evaluations.
For example, many researchers used subsets of the
dataset for training,89,99 so that the time of training
each network will decrease. Also, Ref. 89 uses a strat-
egy to identify the required structure in advance. In
ChamNet,20 only 300 high-accuracy (or other indi-
cators) samples with different efficiency are selected
for each training. Another approach is to keep the
good structure and weight so that the new structure
requires fewer times to train. There are three spe-
cific implementations of this approach: weight shar-
ing, One-Shot method, and weight inheritance. The
weight sharing method, which is mostly used in NAS
based on gradient, makes use of shared weights from
a supernetwork to accelerate the training process,
see Refs. 15, 47, 50, 92 and 98. The one-shot method
consists of adding components to a small network or
deleting components from a large network.11,22,29,41

The weight inheritance method is mostly used in
NAS based on EAs.14,23,24,63 This method requires
that the candidate networks of the entire search
space have similar structures. Most of the network
structures found by NAS based on EAs meet this
condition.

Figure 2 illustrates the weight inheritance
method. In the upper part of the figure, two parent
solutions with a crossover point (indicated as a dia-
mond) are depicted. The first parent solution is com-
posed of the sequences G1 and G2 (representing the
network structure) with the corresponding weights
W1 and W2. Analogously, the second parent solu-
tion is composed of G3 and G4 with the weights W3

2150035-4

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

Fig. 2. Comparison between basic crossover (with ran-
dom initialization of the weights) and crossover with
weight inheritance method.

and W4. In the lower-left part of the figure, the stan-
dard crossover is illustrated. The sequences G2 and
G4 are swapped over and four sets of corresponding
weights W5, W6, W7, and W8 are randomly initial-
ized, thus generating new networks (indicated with
a darker color). In the lower-right part of the figure,
the weight inheritance method is illustrated. When
the crossover occurs, the offspring solutions inherit
the weights of the parent (the weights of that por-
tion of the network). Thus, the first offspring solution
is composed G1 and G4 with the weights W1 and W4

while the second solution is composed of G3 and G2

with the weights W3 and W2.

3. The Proposed Approach:
MOGIG-Net

In this section, we introduce the framework
of the proposed NAS algorithm, namely Multi-
Objective Graph-In-Graph Network (MOGIG-Net)
whose flowchart is shown in Fig. 3.

This section first introduces the overall frame-
work of the proposed algorithm and then describes
the encoding mechanism, crossover, mutation,
decoding method, evaluation, and environment selec-
tion in details.

3.1. Overall description of the
MOGIG-Net framework

Figure 4 displays the structure of the whole algo-
rithm. First, the initial population is obtained
through random initialization (line 1), and then the
fitness evaluation of the initial population is calcu-
lated (lines 2 and 3).

After the initialization, the algorithm makes
use of generation cycles to process the population
(lines 4–15). New individuals are generated through

Fig. 3. Flowchart of the MOGIG-Net framework.

Input: The population size p, the maximal generation number T , the
crossover probability μ, the mutation probability ν, the maximal nodes
number in each block (Mmin, Mmax), the maximal blocks number
(Nmin, Nmax).
Output: Collection of individuals on the pareto frontier meeting the min-
imization goals.

1: P0 ←Initialize a population with the size of p by using the proposed
encoding strategy in Algorithm 6;

2: Convert all genes in P0 to models and evaluate the fitness of the mod-
els by method 12, and record the fitness of each corresponding indi-
vidual;

3: Record the fingerprint and fitness value of each individual.
4: t ← 0
5: while t < T do
6: Q ← φ
7: if the length of Q < P then
8: Two individuals were randomly selected and will cross and mutate

by the method of Algorithm 7 and 8, and then two offspring will be
generated.

9: Record the fingerprint of each offspring, and add the two offspring
into population Q.

10: end if
11: Pt ← Pt ∪ Q
12: Convert genes to models and evaluate the fitness of individuals in

Q by method 12 to control sequence, and record the fitness of each
individual;

13: Sort Pt by non-dominated sorting algorithm, and retain P individ-
uals with better performance, and delete other individuals with poor
performance, then we will get Pt+1;

14: t ← t + 1
15: end while

Return: PT −1

Fig. 4. Framework of the MOGIG-Net algorithm.

2150035-5

August 16, 2021 15:51 2150035

Y. Xue et al.

crossover and mutation. The new individuals are
selected for the survival of the fittest by evaluating
the fitness values for each objective (lines 12 and 13).
Finally, individual sets with better performance on
multiple objectives are obtained.

In NAS problems, the evaluation phase is by far
the computationally most expensive as it requires
the training of the candidate network structure. In
order to avoid the reevaluation of the same architec-
tures/structures, we keep an archive of visited solu-
tions with their objective function value. If a solution
is revisited the archived objective function values are
used.

3.2. Encoding mechanism of
MOGIG-Net

In this study, we use a graph structure to encode the
architecture of the network. We propose the encod-
ing of a CNN in a chromosome divided into blocks
linked by separators. To understand the proposed
encoding, let us remark that CNNs are composed of
blocks, three of them being essential and named (1)
convolution; (2) pooling; and (3) fully connection.
The chromosome representing the CNN is described
as follows:

CB1 − CB2 − · · · − CBn − S − P,

where each CBj is a convolution block, S represents
the structure how the convolution block are inter-
linked, and P describes the presence of pooling layers
in the CNN.

The convolution block CBj is a sequence of sepa-
rators and binary numbers. The “1” indicates a link
between neurons while “0” indicates the dismiss a
connection. A convolution block containing m neu-
rons is represented by a sequence of m(m−1)

2 binary
numbers grouped in sub-blocks of 1, 2, . . . , m − 1
binary numbers. Each sub-block is separated by a
dot. This sequence of binary numbers is the adja-
cency matrix associated with the convolution block.
More specifically, each sub-block contains the infor-
mation of a column of the adjacency matrix. Figure 5
provides an example of the proposed encoding for
m = 5. On the top of the figure, the encoding used in
this study is shown. Below the chromosome, the cor-
responding adjacency matrix and table are displayed.
It may be noticed that each block of the chromo-
some contains the columns of the adjacency matrix.
At the bottom of Fig. 5, the corresponding network

Fig. 5. Encoding of a convolution block CBj (part of the
chromosome) of the candidate CNN. The corresponding
adjacency matrix and table are displayed as well as the
graph of the encoded network. Convolution blocks formed
by these binary blocks are the components of the CNN.

structure is represented. Also, like CBj representing
the connections in each block, the binary numbers in
S is also the same representation as CBj , and thus
represents the connection between blocks.

The structure S is also a sequence of binary num-
bers which has n(n−1)

2 bits. The 1 indicates a link
between two convolution blocks CBi and CBj while 0
indicates the dismiss of connections between blocks.
The sequence S is also divided into sub-blocks com-
posing the columns of the adjacency matrix that
describes the topology of the interconnections among
convolution blocks. The sequence P is composed of n

binary numbers, one for each convolution block CBj

composing the CNN. The sequence P can be seen
as a binary sequence Z where zj = 1 represents the
presence of pooling layers (Pj in Fig. 9) pointing to
CBj+1 while zj = 0 represents the absence of a pool-
ing layer pointing to CBj+1. The last binary number
zn indicates the presence or the absence of a pooling
layer between CBn and the fully connected layer FC.

Figure 6 provides the implementation details of
the encoding mechanism in the context of the initial-
ization of the population to be processed by MOGIG-
Net.

The chromosome code only contains the topolog-
ical structure before the fully connected layer. The
connection mode between the components of each
individual is determined at the beginning of the algo-
rithm (residual connection31 and close connection33).

2150035-6

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

Input: The limit of nodes number in each block (Mmin, Mmax), the
limit of blocks number (Nmin, Nmax), the maximal pooling blocks
number K.
Output: One chromosome

1: Generate a random number n, n ∈ (Nmin, Nmax);
2: flag ← 0
3: gene ← empty string
4: while flag < n do
5: Generate a random number m, m ∈ (Mmin, Mmax);
6: Generate a random sequence s of m(m−1)

2 binary numbers and al-
locate them with “.” separators in CBflag

7: Make sure that the sequence represents a connected graph, see Fig.
10.

8: gene ← gene+s+′−′, the ’-’ in this paper is the separator between
genes of blocks and pools

9: flag ← flag + 1
10: end while
11: Generate a random sequence s of n(n−1)

2 numbers and allocate
them with “-” separators in S.

12: Make sure that the series can represent an oriented connected graph,
see Fig. 10.

13: Generate a random sequence p of n binary numbers and allocate
them in P

14: gene ← gene + s +′ −′ + p
Return: chromosome

Fig. 6. MOGIG-Net encoding strategy and initializa-
tion.

Let us indicate with α the maximum number of
cells of and with β the maximum number of blocks
of the CNN. The longest possible code to search for
contains L bits, and L is calculated by the following
formula:

L =
β × α × (α − 1)

2
+

β × (β − 1)
2

+ β.

The search space contains up to 2L possible candi-
date networks.

3.3. Crossover and mutation

Due to the encoding mechanism proposed in this
paper, an ad-hoc crossover operator is here proposed
to ensure that the offspring solutions meaningfully
represent structures of neural networks.13 Further-
more, a meaningful chromosome must represent a
connected graph.

The proposed crossover operator combines two
chromosomes I and II by selecting randomly some
blocks from the first and then filling the missing gaps
with the genotype of the second to ensure that the
offspring is meaningful. Figure 7 provides the imple-
mentation details of the crossover.

For the chromosome I, two separators are ran-
domly selected. Then the number of separators n

between the two selected separators is calculated
(line 6). Then, two separators in the chromosome II
are selected while the number of separators between

Input: Two parents, p1 and p2, probability of crossover μ ∈ (0, 1).
Output: Two offspring, q1 and q2.

1: Generate a random number flag;
2: if flag > μ then
3: if num of separators in p1 > num of separators in p2 then
4: p1, p2 ← p2, p1
5: end if
6: Select two different positions of separator randomly, l1 and l2, in p1,

(suppose l1 < l2);
7: Select two different positions of separator randomly, l3 and l4, in p2,

and make sure that the num of separators in p1[l1 : l2] is the same
as the num of separators in p2[l3 : l4];

8: Exchange the parts p1[l1 : l2] and p2[l3 : l4], then get two off-
spring, q1 and q2;

9: else
10: q1 ← p1;
11: q2 ← p2;
12: end if

Return: q1 and q2.

Fig. 7. MOGIG-Net crossover.

Input: One individual, p, probability of mutation ν ∈ (0, 1), bits to
change, n.
Output: One individual, q.

1: Generate a random number flag;
2: if flag > ν then
3: q ← modify n different bits in q;
4: else
5: q ← p;
6: end if

Return: q.

Fig. 8. MOGIG-Net mutation.

these two separators is ensured to be also n (line 7).
Finally, the genes between the two separators are
exchanged (line 8).

The mutation operation, outlined in Fig. 8, con-
sists of the random flip from 0 to 1 or from 1 to 0 of a
gene (except for the position of separator). Although
the location of mutation changes is limited, the fact
is that only small connection changes will affect all
the input feature maps after this.

3.4. Decoding of MOGIG-Net

Figure 9 represents the construction of the CNN
from its chromosome. At first, the CBj (in blue) are
decoded. If the CBj is the same as that in the corre-
sponding position in its parents, the module is copied
from its parents. Otherwise, the module is gener-
ated according to the procedure illustrated in Fig. 5.
Then, the S is decoded and the corresponding con-
nection is represented by an input array of each block
(such as the two red arrows pointing to CB3). Finally,
P is decoded and the corresponding position in each
input array of each block is wrapped by an adaptive

2150035-7

August 16, 2021 15:51 2150035

Y. Xue et al.

Fig. 9. (Color online) Construction of a CNN from its
chromosome: The blocks or connections are decided by
the part of encoding in the same color. The green squares
represent fixed structures. FC means a fully connected
layer. P means a pooling layer. Blocks are built in Fig. 5.

pooling (like the right sub-figure in Fig. 9). The con-
nection method in the detailed structure depends on
the method which we choose before the algorithm. If
we use the residual structure, we add the connection
directly. If we use the dense structure, we adjust the
channel and merge it by using the 1 × 1 convolution
kernels to a unitize the channel number.

We also implemented a mechanism to handle
missing connections within and among blocks when
an adjacency list is generated. Let us consider at first
the nodes within a block. If the generated solution
contains a node which has inputs and no outputs,
then a link between the node and the output node
of the block is created. If the generated solution con-
tains a node which has outputs and no outputs, then
a link from the input node is generated. If a node has
neither inputs nor outputs, then the node is removed.
The same reasoning is performed about the connec-
tivity among blocks where each node represents a
block while input and output blocks of the CNN are
considered instead of input and output nodes of the
block. Figure 10 describes this mechanism by show-
ing the three possible scenarios where node 3 has only
inputs (left), has only outputs (center), has neither
inputs nor outputs.

During the construction of a CNN from its chro-
mosome, the skip connections (in blocks and between
blocks), which need the sizes of the input and output

(a) (1.00.111.1111) (b) (1.11.110.1101) (c) (1.00.110.1101)

Fig. 10. Three scenarios to guarantee connected CNN
blocks. In the left encoding, node 3 would have only
inputs. Thus, an output link is generated to guarantee
connectivity. In the central encoding, node 3 would have
only outputs. Thus, an input link is generated to guar-
antee connectivity. In the right encoding, node 3 would
be isolated. Thus, the node is removed from the graph.

to be the same, are fundamental to achieve a graph
structure network. However, convolution and pool-
ing operations can both change the size of the image.
This characteristic of CNNs makes difficult to unify
the input size of each part in the graph structure net-
work. Therefore, we maintain the size consistency in
the input and output of each block or search unit,
so that the size reduction is completely controlled by
the pooling layer. It is simple to keep the image size
unchanged in the convolution block, only by adjust-
ing the super parameters of the convolution kernel
and avoiding the use of a pooling layer.

The formula for calculating the size of input and
output is given in Eq. (1), where Xout and Xin are
the size of the input and output, p is the number
of padding around the input, d is the offset of two
adjacent points of the dilated convolution, k is the
size of the convolution kernel, and s is the step size
of the convolution operation. Therefore, the size is
controlled by means of the convolution kernel:

Xout =
⌊

Xin + 2 × p − d × (k − 1) − 1
s

+ 1
⌋

. (1)

2150035-8

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

Fig. 11. The left subgraph is the macrostructure without pool layers. After executing line 11 of the algorithm in Fig. 6,
the adaptive pooling is added at the specified location (center subgraph). The right subgraph is microstructure. Each
block includes some convolution cells, and each cell is consist of 3× 3 and 1× 1 convolution kernels, which do not change
the size of input.

Furthermore, since maintaining the consistency
of image size outside the convolution block (i.e. the
macrostructure) another countermeasure has been
adopted. We also encode the reduced position of the
size (but did not add into the genes) as the reduc-
tion of the size does not affect the use of convolution
kernel, see Fig. 6, line 11.

We chose adaptive pooling, which is different
from the traditional pooling operation. This oper-
ation can dynamically create pooled cores according
to the input and output requirements, and it has
been used in the last layer of many existing mod-
els.31,33 The step size of the adaptive pooling layer
can be obtained by the following equation:

stride =
⌊

sizein

sizeout

⌋
, (2)

where sizein is the size of input feature map and
sizeout is the size of output feature map. The size
of pool sizepool is then calculated in the following
equation:

sizepool = sizein − stride ∗ (sizeout − 1). (3)

On the basis of these two formulas, we can adjust
the kernel of the adaptive pooling layer from the
size of the input feature map and the size of the
desired output feature map. As shown in Fig. 11, the
two pool layers before the block and FC marked in
bold because we choose to add adaptive pools before
them. In this way, we can control the size of input
and output in each layer by controlling the position
of adaptive pooling. The location of adaptive pooling
and the combination of these channels are referred
to as the detailed structure of the individual and are
recorded separately.

3.5. Evaluation and environment
selection

We divide the training sets D into two parts, 80%
of which are real training sets Dtrain, and the rest
are validation sets Dvalid. When the new population
of offspring solutions is generated, their performance
must be assessed to select the population undergoing
the following generation. The networks composing
the new population undergo training by means of
the training set Dtrain. When the change range is

2150035-9

August 16, 2021 15:51 2150035

Y. Xue et al.

below a pre-arranged threshold, the learning rate is
adjusted accordingly. If the learning rate adjustment
is less than a prearranged value, the training will be
stopped.

In our approach, we use weight inheritance to
speed up the search. Since our crossover operation
can ensure that most of the modules of the net-
work remain unchanged, the weight of the model con-
structed by the child will directly inherit the weight
from the model of the parent. This method, like
weight sharing, can make the network model obtain
a relatively high accuracy rate at the early stage of
evolution. In this way, we only need to continue train-
ing at a relatively small learning rate to achieve the
best performance of each network.

After the training, the accuracy q.acc (that is the
error rate) of the network is assessed by means of
the validation set Dvalid. Furthermore, the model size
in terms of the number of parameters q.params is
also calculated. Both the scores q.acc and q.params

characterize the quality of the candidate CNN. The
nondominated sorting50 is used to select among par-
ent and offspring solutions the population undergo-
ing the following generation, which often used to
evaluate the quality of two solutions in the process
of multi-objective optimization.93 The condition for
one individual to dominate another is to have a per-
formance not worse than the other according to all
objective and to outperform it according to at least
one objective.

Figure 12 provides the implementation details of
evaluation and selection mechanisms.

Input: The population Pt, the training set Dtrain, the validation set
Dvalid

Output: The new population Pt+1

1: for all individual q in population P do
2: Check the database of fingerprint
3: if fingerprint of q is in the database then
4: Get q.acc and q.params from database;
5: else
6: cnn ← Generate the network with q;
7: train cnn on Dtrain until the loss and accuracy don’t change sig-

nificantly;
8: q.acc ← the rate of accuracy assessed on the valid set;
9: q.params ← the number of parameters contained in the model

cnn itself;
10: end if
11: Update individual q in population P ;
12: end for
13: Do non-dominated sorting 50 and select half of the individuals who

were better at multiple goals from Pt+1.
Return: Pt+1

Fig. 12. MOGIG-Net multi-objective evaluation and
selection.

3.6. Limitations of MOGIG-Net and
countermeasures

Without a prior knowledge on the problem, each
connection has initially the same probability to be
set as 0 or as 1. Thus, on average initialized solu-
tions contain approximately half of the skip connec-
tions, many of them being unnecessary. These skip
connections can cause a slow down of the network
training. Thus, the search efficiency of our method is
rather low in the early stages. However, the method
of weight inheritance accelerates the search and par-
tially mitigates this limitation. Already from the sec-
ond generation of the population, we observed a large
number of excellent structures in the population and
its parameters are retained along with the encoding,
which makes the training process overall efficient and
yields high-performance candidate solutions.

4. Experiments

This section displays the results of the proposed
MOGIG-Net on two popular datasets and compares
its performance with that of 17 NAS methods previ-
ously proposed in the literature.

The popular datasets considered in this study
are Cifar-10 and Cifar-100 proposed by the Cana-
dian Institute for Advanced Research.37 These two
datasets are often used to verify the performance
of network models. Each dataset comprises 60,000
images, including 50,000 in the training set and
10,000 in the test set. Each image is a three-channel
color image, and the height and the width are both
32. There are 10 categories in Cifar-10 and 100 cate-
gories in Cifar-100. Both Cifar-10 and Cifar-100 come
from a larger dataset of 80 million small images.
Therefore, to a certain extent, Cifar-10 and Cifar-
100 can illustrate the predictive ability of the model.

Table 1 displays the results of MOGIG-Net and
21 NAS competitors on Cifar-10 and Cifar-100.
The listed methods are divided into three design
categories: NAS human design, single-objective
approaches and multi-objective approaches. For each
NAS method considered in this study, the refer-
ence to its original implementation. For each method
we report the result of the objectives in the pro-
posed model, that is the accuracy q.acc expressed
in terms to percentage error for Cifar-10 and Cifar-
100 and the complexity q.param expressed in mil-
lion of parameters of the network designed by the

2150035-10

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

Table 1. Results on Cifar-10 and Cifar-100 datasets37 of the proposed
MOGIG-Net against 21 NAS methods. The percentage error “Error Rate
(%)” and number of parameters expressed in million pf parameters “Params
(M)” are reported.

Name Params (M) Error rate (%)

Cifar-10 Cifar-100

Human design

DenseNet (k = 12)33 1.0 5.24 24.42

ResNet (depth=101)31 1.7 6.43 25.16

ResNet (depth=1202)31 10.2 7.93 27.82

MobileNetV268 2.2 4.26 19.20

NASNet-A Mobile99 4.2 3.17 16.10

EfficientNet-B086 4.0 1.90 11.90

MixNet87 3.5 2.08 —

DARTS47 3.4 2.83 —

VGG74 20.1 6.66 28.05

NIN44 — 8.81 35.68

Single-objective approaches

Genetic CNN91 — 7.10 29.05

Block-QNN97 39.8 3.50 —

Block-QNN-s97 6.1 4.38 20.65

LaNet-S90 3.2 1.63 —

LaNet-L90 44.1 0.99 —

Oneshot-LaNet-S90 3.6 1.68 —

Oneshot-LaNet-L90 45.3 1.20 —

Large-scale evolution63 5.4 5.40
40.4 23.00

MetaQNN9 — 6.92 27.14

AE-CNN80 2.0 4.30
5.4 20.85

Multi-objective approaches

NSGA-Net50 0.2 4.67
4.0 2.02
0.2 25.17
4.1 14.38

MOGIG-Net 0.9 4.67 —
3.0 3.13 —
3.7 2.01 —
0.7 — 24.71
3.2 — 18.23
3.7 — 14.38

corresponding NAS method. We may observe that
the proposed MOGIG-Net can efficiently detect
networks which combine a relatively low number
of parameters and a low percentage error. For
example, none of the 17 competitor NAS methods
can achieve an error rate of 14.38% on Cifar-100
with only 3.7 million parameters. With respect to

NSGA-Net,50 that is a recent NAS method consid-
ered the state-of-the-art in the field, the proposed
MOGIG-Net designed networks with a compara-
ble performance notwithstanding a lower number of
parameters (approximately 10% fewer parameters).

Figures 13 and 14 display the solutions in the
objective space considered in this study detected by

2150035-11

August 16, 2021 15:51 2150035

Y. Xue et al.

the proposed MOGIG-Net and its competitor. To
enhance the readability of the figures, we present a
zoom around the nondominated solutions.

We noticed that when the network structure is
relatively large, the number of pooling in the detailed
structure greatly affects the required training time
and the memory space. When the number of pooling
is small and the network structure is large, the size of
intermediate variables is very large and the training
time is very long. The results in this study have been
detected after two weeks of calculation.

Experimental results show that for networks
with similar structures, the accuracy of large mod-
els is higher than that of small models, includ-
ing our method. The reason of this phenomenon
is that the increase in the number of parameters
appears to improve the generalization capability of
the model. Therefore, the maximum accuracy that
can be achieved with large models is higher than that
of smaller models.

The results in Figs. 13 and 14 show that
MixNet and MobileNetV2 display excellent perfor-
mance. However, MixNet and MobileNetV2, unlike
the proposed MOGIG-Net are human-designed net-
works with a predefined purpose. Thus, the perfor-
mance of the methods cannot be directly compared.
Also, LaNet produced a solution that dominates the
MOGIG-Net solution for Cifar-10. We suspect that
this may be because LaNet tends to select large mod-
els with high accuracy, and we come to this con-
clusion because some of the networks in the search

Fig. 13. Solutions detected by MOGIG-Net and its com-
petitors represented in the objective space (Cifar-10).

Fig. 14. Solutions detected by MOGIG-Net and its com-
petitors represented in the objective space (Cifar-100).

space, like LaNet-L and oneshot-LaNet-L, seems to
be large.

However, when the network structure is relatively
small, with the increase of total computation times
(Multiply–Adds operations), the generalization per-
formance of the network is also improving. Conse-
quently, the next step of this work will be to trans-
form the network structure and/or to determine the
number of pooling which is randomly added to the
network structure, instead of randomly generating
several pooling layers and inserting them into ran-
dom locations.

Since numerical results indicate that the pro-
posed MOGIG-Net is able to design excellent CNNs,
a future direction of our research will include the
extension of the encoding strategy to other inge-
nious neural systems recently proposed in the lit-
erature, such as Enhanced Probabilistic Neural Net-
work,5 Neural Dynamic Classification Algorithm,61

Dynamic Ensemble Learning Algorithm,6 and Finite
Element Machine for Fast Learning60

5. Conclusion

This paper proposes a NAS method to design CNNs
with high performance in terms of accuracy and a
limited impact on the computational resources.

The proposed algorithm indicated with MOGIG-
Net makes use of a novel block logic based on adja-
cency list to compose the network structure. The

2150035-12

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

encoding mechanism proposed in this paper can nat-
urally represent the structure of any graph. More-
over, MOGIG-Net employs ad-hoc crossover and
mutation operators which are designed to explore
the search space and identify potential candidate
structures. At last, the proposed network encoding
enables that the parent structures can be effectively
and naturally transferred to the offspring during the
crossover process. The proposed approach overcomes
the limitation of classical NAS approaches based on
EAs which require a search in a large space and
an overhead due to multiple re-training sessions.
Numerical results on two popular datasets Cifar-10
and Cifar-100 show that MOGIG-Net can exceed
most existing network structures.

This paper confirms that multi-objective opti-
mization modeling is a promising direction of
research in the field of NAS. Future research will con-
sider further objectives and strategies to reduce the
computational cost of the training by e.g. limiting
the number of skip connections in the first genera-
tion.

Acknowledgments

Yu Xue and Pengcheng Jiang contributed equally to
this work and should be considered co-first authors.

This work was partially supported by the
National Natural Science Foundation of China
(61876089, 61876185, and 61902281), the opening
Project of Jiangsu Key Laboratory of Data Sci-
ence and Smart Software (No. 2019DS301), the
Natural Science Foundation of Jiangsu Province
(BK20141005), the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China
(14KJB520025).

References

1. H. A. Abbass, Pareto neuro-evolution: Constructing
ensemble of neural networks using multi-objective
optimization, in IEEE Congress on Evolutionary
Computation, Vol. 3 (IEEE, 2003), pp. 2074–2080.

2. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and
H. Adeli, Deep convolutional neural network for the
automated detection and diagnosis of seizure using
EEG signals, Comput. Biol. Med. 100 (2018) 270–
278.

3. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan,
H. Adeli and D. P. Subha, Automated EEG-based

screening of depression using deep convolutional neu-
ral network, Comput. Methods Programs Biomed.
161 (2018) 103–113.

4. A. Agogino, K. Stanley and R. Miikkulainen, Online
interactive neuro-evolution, Neural Process. Lett.
11(1) (2000) 29–38.

5. M. Ahmadlou and H. Adeli, Enhanced probabilistic
neural network with local decision circles: A robust
classifier, Integr. Comput.-Aided Eng. 17(3) (2010)
197–210.

6. K. M. R. Alam, N. Siddique and H. Adeli, A dynamic
ensemble learning algorithm for neural networks,
Neural Comput. Appl. 32(12) (2020) 8675–8690.

7. A. H. Ansari, P. J. Cherian, A. Caicedo, G. Naulaers,
M. De Vos and S. Van Huffel, Neonatal seizure detec-
tion using deep convolutional neural networks, Int.
J. Neural Syst. 29(04) (2019) 1850011.

8. A. Asseman, N. Antoine and A. S. Ozcan, Accel-
erating deep neuroevolution on distributed FPGAs
for reinforcement learning problems, ACM J. Emerg.
Technol. Comput. Syst. 17(2) (2021) 1–17.

9. B. Baker, O. Gupta, N. Naik and R. Raskar, Design-
ing neural network architectures using reinforce-
ment learning, in Int. Conf. Learning Representa-
tions (Toulon, France, 2017), p. 18.

10. B. Baker, O. Gupta, R. Raskar and N. Naik, Accel-
erating neural architecture search using performance
prediction, in Int. Conf. Learning Representations
(Vancouver, BC, Canada, 2018).

11. G. Bender, P.-J. Kindermans, B. Zoph, V. Vasude-
van and Q. Le, Understanding and simplifying one-
shot architecture search, in Int. Conf. Machine
Learning (Stockholm, Sweden, 2018), pp. 550–559.

12. S. Bhat, U. R. Acharya, Y. Hagiwara, N. Dadmehr
and H. Adeli, Parkinson’s disease: Cause factors,
measurable indicators, and early diagnosis, Comput.
Biol. Med. 102 (2018) 234–241.

13. C. Blum, R. Chiong, M. Clerc, K. De Jong,
Z. Michalewicz, F. Neri and T. Weise, Evolution-
ary optimization, in Variants of Evolutionary Algo-
rithms for Real-world Applications (Springer, 2012),
pp. 1–29.

14. H. Cai, J. Yang, W. Zhang, S. Han and Y. Yu, Path-
level network transformation for efficient architec-
ture search, in PMLR Int. Conf. Machine Learning
(Stockholm, Sweden, 2018), pp. 678–687.

15. H. Cai, L. Zhu and S. Han, ProxylessNAS: Direct
neural architecture search on target task and hard-
ware, in Int. Conf. Learning Representations (Van-
couver, BC, Canada, 2018), p. 13.

16. X. Cao, J. Yao, Z. Xu and D. Meng, Hyperspec-
tral image classification with convolutional neural
network and active learning, IEEE Trans. Geosci.
Remote Sens. 58(7) (2020) 4604–4616.

17. F. Charte, A. J. Rivera, F. Mart́ınez and M. J. del
Jesus, EvoAAA: An evolutionary methodology for
automated neural autoencoder architecture search,
Integr. Comput.-Aided Eng. 27(3) (2020) 211–231.

2150035-13

August 16, 2021 15:51 2150035

Y. Xue et al.

18. L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou,
B. Zoph, F. Schroff, H. Adam and J. Shlens, Search-
ing for efficient multi-scale architectures for dense
image prediction, in Advances in Neural Informa-
tion Processing Systems (Montréal, Canada, 2018),
pp. 8699–8710.

19. F. Chollet, Xception: Deep learning with depthwise
separable convolutions, in Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (Honolulu, HI,
USA, 2017), pp. 1251–1258.

20. X. Dai et al., ChamNet: Towards efficient network
design through platform-aware model adaptation,
in Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition (Long Beach, CA, USA, 2019),
pp. 11398–11407.

21. A. Diba, A. Pazandeh and L. Van Gool, Efficient
two-stream motion and appearance 3D CNNs for
video classification, in Proc. European Conf. Com-
puter Vision (ECCV) (Amsterdam, Netherlands,
2016), pp. 1–4.

22. X. Dong and Y. Yang, One-shot neural architec-
ture search via self-evaluated template network,
in Proc. IEEE/CVF Int. Conf. Computer Vision
(Seoul, Korea, 2019), pp. 3681–3690.

23. T. Elsken, J. H. Metzen and F. Hutter, Effi-
cient multi-objective neural architecture search via
Lamarckian evolution, in Int. Conf. Learning Repre-
sentations (Vancouver, BC, Canada, 2018), p. 23.

24. T. Elsken, J.-H. Metzen and F. Hutter, Simple and
efficient architecture search for convolutional neu-
ral networks, in Int. Conf. Learning Representations
(Vancouver, BC, Canada, 2018), p. 14.

25. J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu and
X. Wang, Densely connected search space for
more flexible neural architecture search, in Proc.
IEEE/CVF Conf. Computer Vision and Pattern
Recognition (Seattle, WA, USA, 2020), pp. 10628–
10637.

26. F. Gomez, J. Schmidhuber and R. Miikkulainen,
Efficient non-linear control through neuroevolution,
in European Conf. Machine Learning (Springer,
2006), pp. 654–662.

27. F. J. Gomez and R. Miikkulainen, Solving non-
Markovian control tasks with neuroevolution, in
Proc. Int. Joint Conf. Artificial Intelligence, Vol. 99,
Stockholm, Sweden, 1999, pp. 1356–1361.

28. X. Gong, S. Chang, Y. Jiang and Z. Wang, Auto-
GAN: Neural architecture search for generative
adversarial networks, in Proc. IEEE Int. Conf.
Computer Vision (Long Beach, CA, USA, 2019),
pp. 3224–3234.

29. Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei
and J. Sun, Single path one-shot neural architecture
search with uniform sampling, in European Conf.
Computer Vision (Springer, 2020), pp. 544–560.

30. M. Hausknecht, J. Lehman, R. Miikkulainen and
P. Stone, A neuroevolution approach to general

Atari game playing, IEEE Trans. Comput. Intell. AI
Games 6(4) (2014) 355–366.

31. K. He, X. Zhang, S. Ren and J. Sun, Deep resid-
ual learning for image recognition, in Proc. IEEE
Conf. Computer Vision and Pattern Recognition
(Las Vegas, NV, USA, 2016), pp. 770–778.

32. O. M. Hooman, M. M. Al-Rifaie and M. A. Nicolaou,
Deep neuroevolution: Training deep neural networks
for false alarm detection in intensive care units, in
2018 26th IEEE European Signal Processing Conf.
(EUSIPCO) (Rome, Italy, 2018), pp. 1157–1161.

33. G. Huang, Z. Liu, L. Van Der Maaten and K. Q.
Weinberger, Densely connected convolutional net-
works, in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (Honolulu, HI, USA, 2017),
pp. 4700–4708.

34. H. Jiang, F. Gao, X. Xu, F. Huang and S. Zhu,
Attentive and ensemble 3D dual path networks for
pulmonary nodules classification, Neurocomputing
398 (2020) 422–430.

35. N. Karthikeyan and R. Sukanesh, Cloud based emer-
gency health care information service in India, J.
Med. Syst. 36(6) (2012) 4031–4036.

36. A. Krizhevsky, One weird trick for parallelizing con-
volutional neural networks, tech. report (2014).

37. A. Krizhevsky et al., Learning multiple layers of fea-
tures from tiny images, tech. report, University of
Toronto (2009).

38. H. Kwasnicka and M. Paradowski, Efficiency aspects
of neural network architecture evolution using direct
and indirect encoding, in Adaptive and Natural Com-
puting Algorithms (Springer, 2005), pp. 405–408.

39. S. Li, X. Zhao and G. Zhou, Automatic pixel-
level multiple damage detection of concrete structure
using fully convolutional network, Comput.Aided
Civ. Infrastruct. Eng. 34(7) (2019) 616–634.

40. X. Li, Y. Jiang, M. Li and S. Yin, Lightweight atten-
tion convolutional neural network for retinal vessel
image segmentation, IEEE Trans. Ind. Inf. 17(3)
(2020) 1958–1967.

41. X. Li, C. Lin, C. Li, M. Sun, W. Wu, J. Yan and
W. Ouyang, Improving one-shot NAS by suppress-
ing the posterior fading, in Proc. IEEE/CVF Conf.
Computer Vision and Pattern Recognition (Seattle,
WA, USA, 2020), pp. 13836–13845.

42. Y. Li, Z. Yu, Y. Chen, C. Yang, Y. Li, X. Allen Li and
B. Li, Automatic seizure detection using fully con-
volutional nested LSTM, Int. J. Neural Syst. 30(04)
(2020) 2050019.

43. L.-C. Lin, C.-S. Ouyang, R.-C. Wu, R.-C. Yang and
C.-T. Chiang, Alternative diagnosis of epilepsy in
children without epileptiform discharges using deep
convolutional neural networks, Int. J. Neural Syst.
30(5) (2020) 1850060.

44. M. Lin, Q. Chen and S. Yan, Network in network, in
Int. Conf. Learning Representations (Banff, Canada,
2014), p. 10.

2150035-14

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

45. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua,
L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang and K. Mur-
phy, Progressive neural architecture search, in Proc.
European Conf. Computer Vision (ECCV) (Munich,
Germany, 2018), pp. 19–34.

46. G. Liu, W. Zhou and M. Geng, Automatic
seizure detection based on S-transform and deep
convolutional neural network, Int. J. Neural Syst.
30(04) (2020) 1950024.

47. H. Liu, K. Simonyan and Y. Yang, DARTS: Dif-
ferentiable architecture search, in Int. Conf. Learn-
ing Representations (Vancouver, BC, Canada, 2018),
p. 13.

48. Z. Liu, Z. Wu, T. Li, J. Li and C. Shen, GMM
and CNN hybrid method for short utterance speaker
recognition, IEEE Trans. Ind. Inf. 14(7) (2018)
3244–3252.

49. Z. Lu, K. Deb and V. N. Boddeti, MUXConv: Infor-
mation multiplexing in convolutional neural net-
works, in Proc. IEEE/CVF Conf. Computer Vision
and Pattern Recognition (Seattle, WA, USA, 2020),
pp. 12044–12053.

50. Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb,
E. Goodman and W. Banzhaf, NSGA-Net: Neu-
ral architecture search using multi-objective genetic
algorithm, in Proc. Genetic and Evolutionary Com-
putation Conf. (Prague, Czech Republic, 2019),
pp. 419–427.

51. N. Ma, X. Zhang, H.-T. Zheng and J. Sun, ShuffleNet
V2: Practical guidelines for efficient CNN archi-
tecture design, in Proc. European Conf. Computer
Vision (ECCV) (Munich, Germany, 2018), pp. 116–
131.

52. Z. Ma, Reachability analysis of neural masses and
seizure control based on combination convolutional
neural network, Int. J. Neural Syst. 30(1) (2020)
1950023.

53. K. Maeda, S. Takahashi, T. Ogawa and M.
Haseyama, Convolutional sparse coding-based deep
random vector functional link network for distress
classification of road structures, Comput.-Aided Civ.
Infrastruct. Eng. 34(8) (2019) 654–676.

54. O. M. Manzanera, S. K. Meles, K. L. Leenders, R. J.
Renken, M. Pagani, D. Arnaldi, F. Nobili, J. Obeso,
M. R. Oroz, S. Morbelli and N. M. Mauritis, Scaled
subprofile modeling and convolutional neural net-
works for the identification of Parkinsons disease in
3D nuclear imaging data, Int. J. Neural Syst. 29(9)
(2019) 1950010.

55. H. Mo, L. L. Custode and G. Iacca, Evolutionary
neural architecture search for remaining useful life
prediction, Appl. Soft Comput. 108 (2021) 107474.

56. H. Mo, F. Lucca, J. Malacarne and G. Iacca,
Multi-head CNN-LSTM with prediction error anal-
ysis for remaining useful life prediction, in 2020
27th Conf. Open Innovations Association (FRUCT)
(IEEE, 2020), pp. 164–171.

57. R. Negrinho, M. Gormley, G. J. Gordon, D. Patil,
N. Le and D. Ferreira, Towards modular and
programmable architecture search, in Advances in
Neural Information Processing Systems (Vancouver,
Canada, 2019), pp. 13715–13725.

58. F. Neri, Linear Algebra for Computational Sciences
and Engineering, 2nd edn. (Springer, 2019).

59. B. K. Oh, B. Glisic, Y. Kim and H. S. Park, Convo-
lutional neural network based wind induced response
estimation model for tall buildings, Comput.-Aided
Civ. Infrastruct. Eng. 34(10) (2019) 843–858.

60. D. R. Pereira, M. A. Piteri, A. N. Souza, J. P. Papa
and H. Adeli, FEMa: A finite element machine for
fast learning, Neural Comput. Appl. 32(10) (2020)
6393–6404.

61. M. H. Rafiei and H. Adeli, A new neural dynamic
classification algorithm, IEEE Trans. Neural Netw.
Learn. Syst. 28(12) (2017) 3074–3083.

62. E. Real, A. Aggarwal, Y. Huang and Q. V. Le,
Regularized evolution for image classifier architec-
ture search, in Proc. AAAI Conf. Artificial Intel-
ligence, Vol. 33, No. 01 (Honolulu, Hawaii, USA,
2019), pp. 4780–4789.

63. E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Sue-
matsu, J. Tan, Q. V. Le and A. Kurakin, Large-scale
evolution of image classifiers, in Int. Conf. Machine
Learning (Sydney, Australia, 2017), pp. 2902–2911.

64. S. Risi and K. O. Stanley, Deep neuroevolu-
tion of recurrent and discrete world models, in
Proc. Genetic and Evolutionary Computation Conf.
(Prague, Czech Republic, 2019), pp. 456–462.

65. S. Rostami, F. Neri and M. Epitropakis, Progressive
preference articulation for decision making in multi-
objective optimisation problems, Integr. Comput.-
Aided Eng. 24(4) (2017) 315–335.

66. S. Rostami, F. Neri and K. Gyaurski, On algorith-
mic descriptions and software implementations for
multi-objective optimisation: A comparative study,
SN Comput. Sci. 1(5) (2020) 1–23.

67. C. Saltori, S. Roy, N. Sebe and G. Iacca, Regularized
evolutionary algorithm for dynamic neural topology
search, in Int. Conf. Image Analysis and Processing
(Springer, 2019), pp. 219–230.

68. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and
L.-C. Chen, MobileNetV2: Inverted residuals and
linear bottlenecks, in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (Salt Lake City, UT,
USA, 2018), pp. 4510–4520.

69. K. C. Sarma and H. Adeli, Fuzzy discrete multicri-
teria cost optimization of steel structures, J. Struct.
Eng. 126(11) (2000) 1339–1347.

70. K. C. Sarma and H. Adeli, Bilevel parallel genetic
algorithms for optimization of large steel structures,
Comput.-Aided Civ. Infrastruct. Eng. 16(5) (2001)
295–304.

71. W. W. Seeley, J. M. Allman, D. A. Carlin, R. K.
Crawford, M. N. Macedo, M. D. Greicius, S. J.

2150035-15

August 16, 2021 15:51 2150035

Y. Xue et al.

Dearmond and B. L. Miller, Divergent social func-
tioning in behavioral variant frontotemporal demen-
tia and Alzheimer disease: Reciprocal networks and
neuronal evolution, Alzheimer Dis. Assoc. Disord.
21(4) (2007) S50–S57.

72. J. Shen, X. Xiong, Z. Xue and Y. Bian, A con-
volutional neural-network-based pedestrian counting
model for various crowded scenes, Comput.-Aided
Civ. Infrastruct. Eng. 34(10) (2019) 897–914.

73. W. Shin, S.-J. Bu and S.-B. Cho, 3D-convolutional
neural network with generative adversarial network
and autoencoder for robust anomaly detection in
video surveillance, Int. J. Neural Syst. 30(6) (2020)
2050034.

74. K. Simonyan and A. Zisserman, Very deep convo-
lutional networks for large-scale image recognition,
in Int. Conf. Learning Representations (San Diego,
CA, USA, 2015), p. 14.

75. M. G. Soto and H. Adeli, Many-objective control
optimization of high-rise building structures using
replicator dynamics and neural dynamics model,
Struct. Multidiscip. Optim. 56(6) (2017) 1521–1537.

76. K. O. Stanley, J. Clune, J. Lehman and R. Miikku-
lainen, Designing neural networks through neuroevo-
lution, Nat. Mach. Intell. 1(1) (2019) 24–35.

77. F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O.
Stanley and J. Clune, Deep neuroevolution: Genetic
algorithms are a competitive alternative for training
deep neural networks for reinforcement learning, in
Int. Conf. Learning Representations (New Orleans,
USA, 2019), p. 16.

78. Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen
and M. Zhang, Surrogate-assisted evolutionary deep
learning using an end-to-end random forest-based
performance predictor, IEEE Trans. Evol. Comput.
24(2) (2019) 350–364.

79. Y. Sun, B. Xue, M. Zhang and G. G. Yen, A parti-
cle swarm optimization-based flexible convolutional
autoencoder for image classification, IEEE Trans.
Neural Netw. Learn. Syst. 30(8) (2018) 2295–2309.

80. Y. Sun, B. Xue, M. Zhang and G. G. Yen, Com-
pletely automated CNN architecture design based
on blocks, IEEE Trans. Neural Netw. Learn. Syst.
31(4) (2019) 1242–1254.

81. Y. Sun, B. Xue, M. Zhang and G. G. Yen, Evolving
deep convolutional neural networks for image clas-
sification, IEEE Trans. Evol. Comput. 24(2) (2019)
394–407.

82. Y. Sun, B. Xue, M. Zhang, G. G. Yen and J. Lv,
Automatically designing CNN architectures using
the genetic algorithm for image classification, IEEE
Trans. Cybern. 50 (2020) 3840–3854.

83. C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi,
Inception-v4, inception-ResNet and the impact of
residual connections on learning, in Proc. Thirty-
First AAAI Conf. Artificial Intelligence (California,
USA, 2017), pp. 4278–4284.

84. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabi-
novich, Going deeper with convolutions, in Proc.
IEEE Conf. Computer Vision and Pattern Recogni-
tion (Boston, MA, USA, 2015), pp. 1–9.

85. M. Tan, B. Chen, R. Pang, V. Vasudevan, M. San-
dler, A. Howard and Q. V. Le, MnasNet: Platform-
aware neural architecture search for mobile, in Proc.
IEEE Conf. Computer Vision and Pattern Recog-
nition (Long Beach, CA, USA, 2019), pp. 2820–
2828.

86. M. Tan and Q. Le, EfficientNet: Rethinking model
scaling for convolutional neural networks, in Int.
Conf. Machine Learning (Long Beach, CA, USA,
2019), pp. 6105–6114.

87. M. Tan and Q. V. Le, MixConv: Mixed depth-
wise convolutional kernels, in 30th British Machine
Vision Conf. 2019 (BMVC 2019), Cardiff, UK
(BMVA Press, 2019), p. 74.

88. K. Thurnhofer-Hemsi, E. López-Rubio, N. Roe-
Vellve and M. A. Molina-Cabello, Multiobjective
optimization of deep neural networks with combi-
nations of Lp-norm cost functions for 3D medical
image super-resolution, Integr. Comput.-Aided Eng.
27(1) (2020) 1–19.

89. B. Wang, Y. Sun, B. Xue and M. Zhang, Evolv-
ing deep neural networks by multi-objective parti-
cle swarm optimization for image classification, in
Proc. Genetic and Evolutionary Computation Conf.
(Prague, Czech Republic, 2019), pp. 490–498.

90. L. Wang, S. Xie, T. Li, R. Fonseca and Y. Tian,
Sample-efficient neural architecture search by learn-
ing actions for Monte Carlo tree search, to appear in
IEEE Trans. Pattern Anal. Mach. Intell. (2021) 14.

91. L. Xie and A. Yuille, Genetic CNN, in Proc. IEEE
Int. Conf. Computer Vision (Venice, Italy, 2017),
pp. 1379–1388.

92. S. Xie, H. Zheng, C. Liu and L. Lin, SNAS: Stochas-
tic neural architecture search, in Int. Conf. Learn-
ing Representations (Vancouver, BC, Canada, 2018),
p. 17.

93. Y. Xue, Y. Tang, X. Xu, J. Liang and F. Neri, Multi-
objective feature selection with missing data in clas-
sification, IEEE Trans. Emerg. Top. Comput. Intell.
(2021) 10.

94. X. Yao and M. M. Islam, Evolving artificial neural
network ensembles, IEEE Comput. Intell. Mag. 3(1)
(2008) 31–42.

95. Y. Zhang, Y. Miyamori, S. Mikami and T. Saito,
Vibration based structural state identification by a
1-dimensional convolutional neural network, Com-
put. Aided Civ. Infrastruct. Eng. 34(9) (2019) 822–
839.

96. D. Zhipeng, W. Jingcheng, X. Yumin, M. Qingmin
and W. Xiaoming, Voiceprint recognition based on
BP neural network and CNN, J. Phys., Conf. Ser.
1237(3) (2019) 032032.

2150035-16

August 16, 2021 15:51 2150035

A Multi-Objective Evolutionary Approach Based on Graph-in-Graph

97. Z. Zhong, J. Yan and C.-L. Liu, Practical network
blocks design with q-learning, arXiv:1708.05552.

98. B. Zoph and Q. V. Le, Neural architecture search
with reinforcement learning, in Int. Conf. Learning
Representations (Toulon, France, 2017), p. 16.

99. B. Zoph, V. Vasudevan, J. Shlens and Q. V.
Le, Learning transferable architectures for scalable
image recognition, in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (Salt Lake City, UT,
USA, 2018), pp. 8697–8710.

2150035-17

	Introduction
	Related Work: Neural Architecture Search
	Encoding of NAS
	Evaluation of NAS

	The Proposed Approach: MOGIG-Net
	Overall description of the MOGIG-Net framework
	Encoding mechanism of MOGIG-Net
	Crossover and mutation
	Decoding of MOGIG-Net
	Evaluation and environment selection
	Limitations of MOGIG-Net and countermeasures

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

