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Abstract—Evolutionary neural architecture search (ENAS)
treats neural network design as an optimisation problem and
addresses it via evolutionary computation. Despite being flexible
and enabling automated design, ENAS typically suffers from high
computational costs due to the need to train a network at each
fitness evaluation. Surrogate-assisted ENAS methods mitigate the
severity of this challenge by replacing the computationally expen-
sive fitness function with an approximate computationally cheap
fitness function for some fitness evaluations of the run. Currently,
a major research challenge in the field is the smooth integration
of such surrogate models (and, often, data collection mechanisms)
within ENAS frameworks. This paper puts forth a simple yet
effective way to address this challenge. During the initial stage of
the optimisation, the proposed algorithm, score predictor-assisted
ENAS (SPNAS), evolves a small population of candidate architec-
tures using ground truth fitness, i.e., the testing error rate of the
network following its training. The data collected in this stage are
then used to train a multi-layer perceptron network that builds an
alternative fitness function. Unlike algorithms in previous studies,
this novel alternative fitness does not approximate the error rate
but is designed to preserve its order relation over populations of
candidate architectures. Thus, this approach naturally allows for a
computationally cheap population ranking. Most of the evolution
is then carried out with the surrogate (i.e., alternative) fitness
on a large population without retraining the surrogate model or
calculating the ground truth fitness. Experiments conducted on the
EvoXBench platform show that on its seven search spaces, SPNAS
achieves excellent results in terms of error rate despite the modest
use of ground-truth fitness calls.

Index Terms—Evolutionary neural architecture search, surro-
gate model, genetic algorithm, score prediction.

I. INTRODUCTION

D EEP neural networks (DNNs) are popular machine learn-
ing algorithms that can demonstrate exceptional per-

formance in many current vision domains, including image
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classification [1], object detection [2], [3] and semantic seg-
mentation [4]. However, for each problem and dataset, a DNN’s
performance depends on its architecture. Designing a neural
architecture to address a specific problem is a complex task for
human and relies on their experience. Furthermore, an extremely
specialised architecture might be not universal since the vast
majority of real-world problems must show some flexibility as
well as good performance across various scenarios.

Neural architecture search (NAS) is a method used for au-
tomatically designing neural architecture, thus precluding hu-
man expertise and enabling a priori encoding of the design
requirements. In other words, a NAS problem can be formulated
as the search of that architecture that, once trained, provides
minimal error on the validation set. More formally, a NAS can
be described as the following optimisation problem:

min
A

Error(A,W ∗, Dval)

s.t. W ∗ = argmin
W

Loss(A,W,Dtrain), (1)

whereDtrain denotes the dataset used for training,Dval denotes
the dataset used for validation, A denotes the candidate neural
network architecture, W denotes the weights in the correspond-
ing architecture, and W ∗ denotes the weights obtained after
training the neural network on the training dataset. The final
desired neural network architecture is obtained by minimally
optimising A.

If the NAS problem in (1) is tackled via an evolutionary
computation approach, the corresponding NAS subfield is often
referred to as evolutionary NAS (ENAS) [5].

Analogous to graphs, neural architectures are naturally en-
coded as vectors of discrete numbers. Thus,once endowed with
appropriate search operators, evolutionary algorithms are a nat-
ural option for NAS. Conversely, approaches that transform a
discrete problem into a continuous one to then exploit its gra-
dient, such as differentiable neural architecture search methods,
generate and explore ill-formed architectures [5], [6].

Neural architecture search methods based on reinforcement
learning, or the use of a reward strategy to find the optimal neural
network, may be computationally expensive, e.g., 800 GPUs
searching for 28 days (22,400 GPU days), as reported in Re-
inforce NAS [7]. Although ENAS is usually much cheaper
than reinforcement learning, its implementation can still be
computationally demanding, often taking several days to find
a high-performing architecture. For example, the AE-CNN pro-
posed by Sun et al. takes 27 GPU days [8]. The search time for
CNN-GA is 35 GPU days [9], while NAT uses about 59 GPU
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days [10]. FairNAS uses 12 days [11], and Evo-OSNet searches
for 8.6 GPU days [12]. This demonstrates that ENAS has several
limitations when applied to real-world scenarios. Since the time
consumed by this approach mainly stems from the training of
the weights of a candidate architecture, a technique that reduces
the training’s computational time would drastically reduce the
computational cost of the entire search process, thus making the
ENAS design much more viable.

One popular approach to reduce the computational cost of
NAS is to employ one-shot learning techniques for training,
meaning the training of the candidate architecture is performed
based on a single or a very limited set of data. This is often
interpreted as inheriting weights from an external network. One
early example of this approach was proposed by Brock et al. [13],
where an auxiliary HyperNet generates the weights for the
candidate architecture. Following a similar idea, the Single Path
One-Shot (SPOS) model uses a simplified supernet that samples
candidate architectures as single paths of such a supernet [14].
Lu et al. have used an approach based on weight sharing to
search for optimal network architectures from the knowledge
of weights in the super-net, thus shortening the training process
of the candidate networks [15]. Huang et al. have presented an
approach based on weight inheritance to initialise the network
weights of part of the offspring architectures using the already
trained weight knowledge of the parent generations, thus short-
ening the training process for the offspring and assisting the
evolutionary search process [16].

The work of Bender et al. performs an experimental study
to interpret and understand the one-shot mechanisms in NAS
based on weight inheritance (a.k.a. weight sharing) [17].
Dong et al. propose a different approach where the auxiliary
network is used to predict the quality-based ranking of several
architectures [18]. PRENAS combines the weight inheritance
and performance prediction approaches [19]. Specifically, the
algorithm reduces the sample space by a zero-cost selector
and performs one-shot training through a weight inheritance
mechanism. Following analogous logic, ShiftNAS [20] makes
use of a supernet but adjusts the sampling probability based on
the complexity of subnets. This is achieved by evaluating the
performance variation of subnets with different complexity and
designing an architecture generator that samples subnets with
the desired complexity.

As an alternative approach to expedite the calculation time
in NAS, surrogate-assisted models—using computationally in-
expensive models that predict the performance of a candidate
architecture—are employed to reduce the number of architec-
ture training instances [21], [22]. For example, Sun et al. have
used random forests for end-to-end performance prediction,
significantly reducing the search time of AE-CNN [23]. Direct
prediction of architecture performance is likely to lead to inac-
curate comparisons and, thus, ranking due to unavoidable error
propagation. Wang et al. have overcome this issue by predicting
the outcome of a comparison rather than each individual perfor-
mance. The method proposed by Wang et al. uses support vector
machine (SVM) as a surrogate model to assist the search of a
PSO-like ENAS. The already evaluated individuals are used as
empirical knowledge to train a ‘comparator’ and thus quickly

compare two architectures to predict which could demonstrate
better performance [24]. However, this estimation of each pair-
wise comparison, albeit powerful within a PSO framework,
carries an important limitation when integrated within an ENAS
that requires ranking of the entire population. Each comparison
typically contains a small error with respect to the ground truth,
and these errors propagate and become amplified when multiple
comparisons are predicted, resulting in an unreliable population
raking.

The multi-layer perceptron network (MLP) is widely used as
a regression and classification model and is also employed as a
surrogate model for NAS. Lu et al. employed four surrogate
models, including MLP, and adaptively selected the optimal
surrogate model based on the results of K-fold validation [15].
White et al. built a feed-forward neural network and trained it
with the mean absolute error loss function to fit limited data [25].
Hassantabar et al. used MLP to construct a regression model and
fit it using the MSE loss function [26]. Lu et al. constructed an
accuracy predictor using MLP and designed a loss function to
reflect the ranking information between any two samples [27].
Additionally, they utilised other mature machine learning mod-
els such as radial basis function, decision tree, gradient boosting
as teacher models to assist in training MLP. Xue et al. utilised a
shared-parameter MLP to distinguish the similarity between any
two networks, aiming to find better solutions near the optimal
network [28].

The various methods to expedite NAS and ENAS present
relative drawbacks. The methods that make use of a supernet
or an external network for weight sharing may require exten-
sive pre-training, as well as fine-tuning or augmentation of the
designed architecture [29]. The supernet provides performance
estimations for the architectures within the search space that it
defines, enabling the search procedure to quickly filter out less
promising configurations and focus on more promising regions.
This approach helps streamline the search process by improving
the efficiency of exploring the architecture space. Moreover, the
supernet provides a search space that allows for the discovery
of high-performance networks within a constrained resource
budget, without incurring the cost of exploring a much larger,
unconstrained space. The methods that use surrogate models
may incur a high computational cost for building/training the
approximating function. Additionally, the surrogate function
might be unreliable and may mislead the search of the NAS
algorithm. The latter two problems are especially relevant when
the surrogate model approximates complex objective functions.

The present study proposes a method called score predictor-
assisted ENAS (SPNAS). The design of the proposed SPNAS
has been motivated by two principles:
� A surrogate model that simply respects the order relation of

the objective function is much easier to define and train than
a surrogate that faithfully approximates an entire objective
function’s landscape.

� The efficiency of a surrogate model can be significantly
enhanced if its design naturally integrates within the oper-
ations of the evolutionary framework that embeds it.

By adhering to these principles, the proposed SPNAS, in
contrast to other surrogate-assisted NAS algorithms that utilise
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MLP, leverages MLP as the surrogate model to expedite the
evaluation process in a distinct manner from existing works. It
should be noted that simplifying the problem to an alternative
function to the objective function, which preserves only its order
relation (and thus the ranking of the candidate architectures),
allows for the use of a straightforward and easily trainable
model like MLP. The proposed surrogate model is designed
to predict the ranking of individuals within a population to
facilitate the selection of the most promising candidates. This
model effectively ensures that the top individuals are retained
for the next generation. The main characterising elements of the
proposed SPNAS are as follows:
� The network architecture is represented using the encoding

in EvoXBench for evolution and augmented via using one-
hot conversion of all non-binary regions to achieve full
binary encoding of each candidate architecture for the score
predictor.

� An MLP network is used as a score predictor model, and a
special loss function is designed to ensure that the predicted
score ranking is consistent with the ranking of the ground-
truth information available.

� A GA-based search framework whose evolution is com-
posed of a training stage occurring on a small population
and a prediction stage occurring on a large population is
designed.

� The MLP score predictor is designed to assign ranking
scores to candidate architectures within the population.
These scores are then used by the GA selection mechanisms
to process and select individuals at each generation.

The remainder of this paper is organised as follows: Section II
introduces related work. Section III describes the proposed
SPNAS in detail. To verify the effectiveness and efficiency of
the proposed method, the experimental design and results are
given in Section IV. Finally, the conclusions and future work
are discussed in Section V.

II. RELATED WORK

This section first introduces the encoding strategy used in
EvoXBench [30], which is the basis for the sampling and search
in this paper. Then,state-of-the-art neural network performance
predictors are reviewed, and the limitations of current NAS
methods are analysed.

A. Search Space and Encoding Strategy in EvoXBench

There are seven search spaces in EvoXBench, includ-
ing NASBench-101, NASBench-201, NATS, DARTS, Moblie
NetV3, ResNet50 and Transformer. Among these, NASBench-
101, NASBench-201 and DARTS are encoded using micro-
encoding, and only the in-cell connections are represented.
Previously, Ying et al. trained all candidate networks in the
search space of graph-based representations and collapsed all
of the data into NASBench-101 [31]. All candidate networks
in NASBench-101 are encoded as 26 bits, of which the first 21
bits are the upper triangular region of a 7× 7 adjacency matrix,
using ‘1’ and ‘0’ in the i-th column; the j-th line representing
the i-th operation is connected to the j-th operation. The first

and last operations are the input and the output, respectively.
For the last five bits in the encoding, the ordinal indexes of
operation types are represented as the middle five nodes, includ-
ing ‘conv3x3-bn-relu’, ‘maxpool3x3’ and ‘conv1x1-bn-relu’.
In their work, Dong et al. used the architectures of three cell
stages mixed with two residual blocks. They placed five cells
in each stage and used the same topology for all cells in one
network, NASBench-201 [32], [33]. To encode the networks,
the cells contained six operations represented by edges, and
the operations were represented by {0, 1, 2, 3, 4} corresponding
to the five possible operations. The last micro search space
is DARTS. Utilising the same method used for the original
search space, Zela et al. represented the entire network using
an architecture with two inputs, four middle nodes, and one
output; there were eight total operations between all nodes [34].
The difference stemmed from the removal of ‘none’ operations
from the optional operations.

The other four search spaces are represented using a macro
encoding approach with hyper-parameters in the macro architec-
ture. Previously, based on the macro architecture of NASBench-
201, Dong et al. used only one predefined cell topology in
each stage and set the number of channels for all cells and
residual blocks to be generated from eight kinds of numbers,
this algorithm is termed NATS [35]. Cai et al. designed the
ResNet50 search space based on the hyper-parameters used by
ResNet during the design process, by which hyper-parameters
such as the size of the input image, the depth of each block
and the dilation rate are encoded [36]. They also encoded the
network for MoblieNetV3, in which hyper-parameters such as
the size of the input image, the size of the convolution kernel and
the depth of the convolution block are encoded [36]. With the
great success of vision transformer in the computer vision field,
for the first time, Chen et al. constructed a benchmark dataset
with the search space in the form of Transformer; the encoding
of each network includes the depth of the network, the number
of neurons in the hidden layer and the number of heads of the
multi-head attention mechanism [37].

B. Surrogate-Assisted Neural Architecture Search

To reduce the massive time consumption required in the
search process of neural network architectures, many surro-
gate approaches have been put forwards over the past years.
This paper proposes the following categorisation of modern
surrogate-assisted NAS approaches: 1) Training curve predic-
tion: For a given architecture, this method predicts its training
curve and, thus, its performance. For example, Klein et al. used
a Bayesian neural network to predict the training curves of a
convolutional neural network [38]. Baker et al. used a similar
approach, with the difference being that they built a regression
model to obtain the corresponding features from the network
structure, hyper-parameters and early learning curves [39].
These features, along with the training curves, were used to
predict the final performance. 2) Accuracy/error rate prediction:
These methods directly predict the performance (accuracy/error
rate) of a candidate architecture, building up a mapping be-
tween the NAS search space and the performance. Previously,
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Dudziak et al. used a graph convolutional network (GCN) to
predict accuracy. They noted that it was difficult to directly
learn the accuracy patterns, so they adopted the approach of
first learning a latency predictor based on the network architec-
ture and then transferring the latency predictor to the accuracy
prediction task [40]. Wen et al. used a GCN to predict accuracy
by further trading off the number of samples and the number of
retentions, thus improving efficiency and effectiveness [41]. Fi-
nally, Sun et al. used random forests for end-to-end performance
prediction via integrating a large number of decision trees and
thus obtaining good prediction accuracy [23]. 3) Comparative
relationship prediction: For a pair of candidate architectures,
this method predicts which of the two has higher performance
(i.e., it predicts the outcome of a pairwise comparison). In
their work, Chen et al. trained a neural architecture comparator
using comparative learning and explored the possible accuracy
based on the results, thus reducing the dependence on train-
ing data [42]. Wang et al. used SVM to predict the possible
comparative relationship between two networks and later used
the PSO method to explore the search space and filter out
architectures during the search process to reduce the search
time [24]. However, such approaches may introduce the problem
of circular comparisons in the prediction phase. 4) Rough range
prediction: This method uses predictors with low accuracy
(and fast training) to select potentially good solutions from a
large set of candidate architectures. Wu et al. attempted to use
random forests to find roughly good networks by continuously
narrowing down the range and thus obtaining the final searched
architecture [43]. However, it is impossible to know whether the
architecture designed via this method is satisfactory, meaning
further evaluation of the last predicted network is needed. 5)
Ranking predictionL This method predicts a score that, although
not representing a performance estimate, preserves the order
relation of the performance and thus allows for the ranking of a
set of solutions. Zheng et al. discovered that models that perform
well in the pre-training period tend to attain a good result after
convergence. They obtained relative performance ranking via
the early performance of candidate network architectures to
speed up the search process [44]. Xu et al. proposed adding
RankLoss to the prediction as an auxiliary function. However,
this method relies greatly on the amount of data available [45].
Guo et al. modified this method by adding tire prediction to
compensate for the imprecise prediction of superior networks in
the case of insufficient data [46]. Hu et al. employ a pairwise
labelling approach to train their ranking model, which enables
them to derive a scoring function that assigns scores to all
architectures [47].

The proposed SPNAS belongs to the latter category. As
mentioned above, surrogate-assisted methods with rank-based
score prediction are especially useful in ENAS approaches
that routinely require population ranking, such as GA frame-
works. Since this paper’s SPNAS relies on a GA structure,
it is used within the ranking prediction category. However,
although inspired by existing research, this SPNAS is char-
acterised by a radically different algorithmic approach. While
all existing methods perform ranking prediction using specific
pieces of information about the accuracy/error rate of trained

architectures at some point, the current SPNAS, in a holistic
surrogate spirit, builds an alternative objective function of the
candidate architecture vectors and focuses only on the rank of
the ground truth instead of on values, without taking interme-
diate steps to partly estimate the performance of the candidate
architecture.

III. SCORE PREDICTOR-ASSISTED EVOLUTIONARY NEURAL

ARCHITECTURE SEARCH

A. Encoding

In this paper, the encoding of candidate architectures adopts
and modifies the method introduced in EvoXBench [30]. As an
example of the current paper’s encoding strategy, the encoding
strategy for one CNN block in NASBench-101 is schemati-
cally represented in Fig. 1. As a CNN is composed of nine
identical blocks, the encoding in Fig. 1 univocally identifies
the entire candidate architecture. The candidate architectures
corresponding to a CNN block in NASBench-101 are encoded
as a 26-bit binary vector. The block’s topology is described via
an adjacency matrix. Due to the symmetry of the representation,
the upper triangular matrix, which is 21 bits, already contains
all relevant information. In each block, there are five operation
nodes (circles in Fig. 1), one input node and one output node.
Each operation can be one of three types, represented as {0, 1,
2}. Furthermore, the absence of an operation node is indicated
with the null flag−1. Fig. 1 displays a null operation as ‘None’.
Thus, in the encoding proposed in EvoXBench, one block, like
the one in Fig. 1, will have 21 + 5 = 26 bits, where some are
binary numbers and some are integers. Different from the other
benchmark search spaces, the architectures in NASBench-101
contains useless nodes which do not have any input or output. In
order to reduce the impact of unnecessary nodes on the training
of the surrogate model, we completely remove the redundant
nodes and use ‘0’ to pad.

In addition to the original encoding from EvoXBench, this
work also handles the fully binary versions of the vectors. To
obtain fully binary vectors, each operation module is converted
from integer to three-bit binary vector via the one-hot trans-
formation, as depicted on the right-hand side of Fig. 1. Then,
the ‘None’ operation is represented as a vector of zeros. Thus,
in the score predictor of SPNAS, a candidate architecture in
NASBench-101 is encoded as a binary vector of 21 + 3× 5 =
36 bits. The encoding for the other spaces is analogous, and the
one-hot encoding is used to represent all non-binary parts as
binary vectors.

The original architecture representations reported in [30] are
used for the GA search of candidate architectures. The modified
fully binary vectors are used for training the surrogate model, as
described in Section III-B.

Table I lists the vector length in the original and one-hot
encoding of each candidate architecture block in each bench-
mark considered here. In the table, ‘Dataset’ indicates that the
network in this search space is designed and trained based on the
corresponding image dataset, and ‘Size’ indicates the number of
candidate architectures in the search space.
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Fig. 1. Encoding example on NASBench-101 search space.

TABLE I
AN OVERVIEW OF THE SEARCH SPACE IN EVOXBENCH

B. Score Predictor

Since a large amount of data with which to train a surrogate
model is usually not available, this paper uses an MLP surrogate
model as the score predictor of the proposed SPNAS. While
this MLP always contains three hidden layers, the number of
neurons contained in each hidden layer is dynamically adapted
according to the length of the encoding represented in the search
space used. In the first two hidden layers, the number of neurons
grows to twice the dimension of the input data. In the last hidden
layer, the number of neurons is equal to the dimension of the
input data. As such, satisfactory training with a relatively small
amount of data is possible in all scenarios. All trained data are
in the fully binary form described in Section III-A. The MLP
input is a fully binary vector, similar to the 36-bit vector used
for NASBench-101, while the output is the score associated with
the network, or scalar.

A commonly used loss function in supervised learning is the
mean square error (MSE) between the predicted vectors and
the corresponding true labels. However, in the current case, the
use of MSE would be inappropriate, as it would not preserve
the correct ranking of the solutions. For example, consider
three candidate architectures whose ground-truth error rates
(labels) are [0.08,0.09,0.10]. For the same three architectures,
consider two sets of predicted error rates, [0.07,0.11,0.13] and
[0.11,0.07,0.09]. The first prediction has the same ranking order
as the ground truth, while the second does not. However, the

MSE associated with both predictions is 0.0005. Thus, if the
MSE were used, it would be impossible to distinguish the two
scenarios.

To preserve the solution ranking, during the training process,
the data are loaded in batches, thus obtaining a vector consisting
of the predicted values. More formally, with N , the batch size
and corresponding batch are indicated as follows:

(X,Y ) = {(Xi, yi)}i=1
N , (2)

where Xi is the ith candidate architecture of the batch encoded
as a fully binary vector, as described in Section III-A, and yi is
the corresponding error rate. WithF , the function that returns the
predicted error, ŷi, is calculated by the MLP network, associated
with the candidate architecture Xi, i.e., ŷi = F(Xi). The set of
predicted values for the entire batch is then indicated with Ŷ .
The PairLoss function L1(Ŷ , Y ) is introduced below:

L1(Ŷ , Y ) =

N−1∑

i=1

N∑

j=i+1

φ((ŷi − ŷj)× sign(yi − yj)), (3)

where φ is the monotonically decreasing function φ(x) =
log(1 + e−x) and sign is the sign function. The L1 function
amplifies the difference in performance between each pair of
candidate architectures Xi and Xj contained in a batch.

However, the PairLoss function L1 on its own is not a
suitable loss function, as it performs only pairwise comparisons.
As an example, consider three candidate architectures, X1, X2

and X3. Assume that X1 and X2 both have better performance
than X3. If the parameters of the MLP surrogate are optimised
only on the basis ofL1, two separate updates will be observed in
the directions of X1 and X2 (coming from the two comparisons
X1 vsX3 andX2 vsX3, respectively). However, the magnitudes
of these updates do not consider how large the X1 vs X3

improvement is with respect to X2 vs X3. In short, PairLoss
lacks distance perception. Correct management of this issue will
enable better separation in the scores and, thus, more accurate
ranking of multiple solutions.
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Fig. 2. The overall framework of score predictor-assisted evolutionary neural architecture.

To correct this limitation of PairLoss, this paper proposes a
further function, DistanceLoss, defined as follows:

L2(Ŷ , Y ) =

M−1∑

i=1

M∑

j=i+1

φ((d̂i − d̂j)× sign(di − dj)), (4)

whered is the vector whose generic element is |yk − yl|withk ∈
{1, 2, . . . , N − 1} and l ∈ {k + 1, k + 2, . . . , N}. The vector d̂
is analogous to d but refers to the predicted values. The length
of vectors d and d̂ is M = (N−1)×N

2 .
During the training process, the loss function in (5) is thus

used to train the surrogate MLP network.

L(Ŷ , Y ) = L1(Ŷ , Y ) + Sigmoid(α)× L2(Ŷ , Y ), (5)

where α is a trainable parameter, and we use the Sigmoid
function to constrain the weight ofL2(Ŷ , Y )within the range of
0 and 1. This decision is made to ensure that the training places
greater emphasis on L1 than on L2. The former, which focuses
on determining the winner of the pair-wise comparisons, makes
a more significant contribution to accurate ranking predictions.
The proposed surrogate model is the MLP network with the
architecture described above and trained via minimising the loss
function L in (5).

C. Score Predictor-Assisted Evolutionary Neural Architecture
Framework

A search framework based on GA logic and embedding the
elements described in Sections III-A and III-B has been designed
to perform the NAS task. Fig. 2 depicts the overall framework of
SPNAS. In this section, the term fitness will be used to refer to the
score associated with the candidate architectures regardless of
how it was calculated, e.g., via ground-truth or surrogate score.
In the case of the ground-truth score (error rate of a sampled and

trained architecture), a positive definite function is minimised
between 0 and 1. It can be immediately observed that error rate
functions always take values between 0 and 1. In the case of
the surrogate score, an unbounded function is minimised, which
allows for negative scores (the lower, the better). This latter
function is the loss function L defined in (5). This difference
is not an issue since SPNAS never mixes ground-truth and
surrogate scores in the same generation. The SPNAS framework
is divided into two levels.

The first level is a GA-like evolutionary framework whose
role is to perform the search in the space of the candidate
architectures, as seen in Algorithm 1. At the beginning of
the evolutionary process (lines 1–4), a population of candidate
architectures is randomly generated and the MLP surrogate
initialised. The candidate architectures are encoded as vectors;
see Section III-A. Note that while the user chooses the size of the
population to undergo ground-truth fitness evaluations (training
stage), a population 10 times larger is sampled for the prediction
stage; see S in Algorithm 1.

In the generation cycle (lines 6–21), the offspring population
Q is generated by recombining the individuals of population P
via crossover and mutation operators. To start, binary tourna-
ment selection is performed to choose the parents undergoing
crossover. Then, uniform crossover is performed to each pair
of parents. The logic of crossover is similar to that recently
discussed in [48]. A randomly chosen mutation is used in this
GA-like evolutionary framework, which changes elements with
a probability and randomly changes to another value between
the board.

The performance of offspring population Q is evaluated.
Then, in a fully elitist fashion, the best solutions from bothP and
Q (P.fitness and Q.fitness indicate the list of fitness values
associated with populations P and Q, respectively) are saved
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Algorithm 1: GA-like Evolutionary Framework.
Input: size of population to true evaluate S, number of

generations T , number of generations to true evaluate
NG.

Output: Best individual Xbest.
1: Initialise 10× S individuals as the initial population

P .
2: Initialise a MLP as the score predictor M .
3: G← 0.
4: History ← {}.
5: Evaluate(G, NG, None, P , History, M ) according to

Algorithm 2.
6: while G < T do
7: Tournament parent selection with size 2.
8: Crossover and mutation to generate offspring Q.
9: Evaluate(G, NG, P , Q, History, M ) according to

Algorithm 2.
10: Elitist selection from P.fitness and Q.fitness to

form the new population P .
11: G← G+ 1.
12: end while
13: Select the best individual Xbest based on the best L

validation error rate.
14: Get true error rate of Xbest.

Algorithm 2: Evaluate(G, NG, P , Q, History, M ).
Input: current generation G, parent population P , offspring

population Q, fitness records History, score prediction
M , number of generations to true evaluate NG.

Output: The fitness of Q.
1: Check duplicates in Q and marked.
2: Check invalid individuals from Q and marked.
3: if G < NG then
4: Query true fitness Q.fitness[1:S] for the first S

unmarked individuals in Q.
5: Set fitness Q.fitness[S + 1:10× S]← 1 for the

other 9× S individuals in Q.
6: Record Q in History.
7: else if G = NG then
8: Convert all non-binary regions in encoding of each

record in History to one-hot format.
9: Train M with History.

10: Q.fitness←M(Q)
11: P.fitness←M(P )
12: else
13: Q.fitness←M(Q)
14: end if

intoP for the following generation. After the last generation, the
ground-truth error rate of final populationP is calculated and the
top L architectures are achieved. Then, the validation error rate
of the topL architectures are evaluated and the best architecture,
Xbest, is selected as the output of the ENAS process.

The second level is the evaluation, or the calculation of the
Evaluate(G, NG, P , Q, History, M ) function to obtain the

fitness of the offspring population Q outlined in Algorithm 2.
To start, the offspring population is scrolled to identify and mark
duplicate and invalid solutions, i.e., those solutions that do not
correspond to a meaningful network architecture. Eliminating
duplicates is important in the training stage, as it ensures that
the training data for the surrogate model are diverse.

If the algorithm is in the training stage (lines 3–11), then
S valid and unique architectures are trained to calculate their
error rates (fitness values). The data associated with this training
are saved in the History dataset. The fitness of all remaining
9× S candidate architectures is set to 1. The latter operation
effectively excludes these 9× S solutions from the evolution.
The handling of a population of size10× S whenS solutions are
needed is chosen here to ensure that, at each generation, S valid
and unique offspring architectures are generated. This pragmatic
algorithmic solution is effective since the proposed SPNAS
has always generated enough valid architectures throughout all
experiments in this study.

When the data collection is complete (line 7), all solutions in
the History dataset are converted into fully binary vectors by
applying the one-hot transformation and are then used to train the
MLP network to build a surrogate model. Next, the performance
of the entire population composed of 10× S individuals is
assessed via the newly formed surrogate. From this point on,
only the surrogate fitness is used. In the following generations,
i.e., the prediction stage (lines 12–14), the score calculated by
the surrogate model is used in lieu of the error rate to rank and
select the solutions.

The scheme of the overall SPNAS framework depicted in
Fig. 2 graphically represents the GA-line search framework
and the Evaluate function, including the training and predic-
tion stages. Note that for simplicity, the ‘Generate offspring’
block embeds the parent selection and generation of offspring
population Q.

The proposed surrogate management enables a natural inte-
gration within any population-based metaheuristic. Surrogate-
assisted algorithms that combine ground-truth and surrogate
models to assess the fitness on individuals of the same population
implicitly include noise related to the approximation error [49].
This noise affects the selection operations, such as the ranking,
and may further mislead the search (when comparing a ground-
truth fitness against a surrogate fitness). In SPNAS, within a
generation, either only the error rate or only the surrogate model
is used to assess the quality of the entire population. This makes
the algorithm more stable, as it eliminates the above-mentioned
noise through a simple yet effective strategy.

IV. EXPERIMENTS

To validate the effectiveness of the proposed SPNAS, this
paper’s approach was thoroughly tested and compared against
state-of-the-art modern NAS algorithms. Section IV-A intro-
duces the SPNAS hyper-parameters. Section IV-B details the
results on EvoXBench, while Section IV-C compares the SPNAS
algorithm’s performance against that of other modern NAS al-
gorithms. Finally, Section IV-E experimentally illustrates some
of the functioning principles of SPNAS.
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TABLE II
EXPERIMENTAL RESULTS OF ERROR RATES (%) ACROSS ALL SEARCH SPACES AND BENCHMARK DATASETS ON EVOXBENCH

A. Hyper-Parameter Settings and Datasets

Here, SPNAS was run for total number of generationsT = 50,
where the first NG = 10 generations were used for the training
stage and the remaining 40 generations for score prediction via
the surrogate model. The small population size of the candidate
architecture whose ground truth value was calculated was S =
40. Thus, in the prediction stage, SPNAS can handle a large
population of 10× 40 = 400 individuals. When applying the
uniform crossover rate, each bit had a 0.5 probability of being
selected from either parent. The mutation occurred on each bit
with a 0.05 probability. To train the surrogate model, stochastic
gradient descent with a learning rate of 5× 10−4 and a batch
size of 200 were used.

All seven search spaces in EvoXBench were used, where both
NASBench-201 and NATS contain benchmark data on three
image datasets.

B. Experimental Results on EvoXBench

Eleven sets of experiments were completed on all datasets in
EvoXBench, with each experiment comprising five independent
runs. The experimental results are shown in Table II, reported in
terms of the error rate. In the table, the columns with ‘Optimal’
indicate the validation and test accuracy of the individual that
performed best on the test set in the search space. The first
two columns indicate the error rate of the best architecture that
SPNAS could find on the validation set. The mean, standard
deviation and minimum are given for five runs on the validation
set. Based on the results of each search on the validation set,
the encoding of the best architecture was obtained, and it was
evaluated on the test set. The mean, standard deviation and
minimum values were reported similarly, recorded in columns 4
and 5. It must be noted that ‘Optimal’ results on the validation set
are marked with ‘∗’ to indicate that they refer to the performance
on the validation set of the architecture known to be optimal
on the test set. It follows that the error performance of these
architectures appears to be optimal on the test set but not on the
validation set. Additionally, it is worth noting that the optimal
records with ‘+’ on the test set in DARTS, MobileNetV3,
ResNet50, and Transformer are not actual evaluation results
but rather estimates provided by the original authors. In some
datasets, SPNAS was able to find the optimum, and in other
datasets, it found a value close to the optimum on the test set.

TABLE III
COMPARISON OF DIFFERENT METHODS REGARDING THE OBTAINED ERROR

RATE (%) OF THE CIFAR-10 DATASET AND THE RANKING (%) IN THE SEARCH

SPACE OF NASBENCH-101

However, since there were cases in the benchmark datasets in
which the optimal individual on the test set performed poorly
on the validation set, e.g., NASBench-101, SPNAS was misled
to find the optimal solution on the validation set although this
solution was ranked second on the test set.

C. Comparison Against Other Methods on NB101, NB201 and
NATS

The SPNAS algorithm was further compared against other
methods on the EvoXBench benchmark dataset. The comparison
was conducted against the modern NAS algorithms listed in
Tables III, IV, and V; the best results are highlighted in bold. For
each method, the number of function calls to the true objective
function (and not the surrogate model) is reported and indicated
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TABLE IV
COMPARISON OF DIFFERENT METHODS REGARDING THE OBTAINED ERROR RATE (%) OF THREE DATASETS IN THE SEARCH SPACE OF NASBENCH-201

TABLE V
COMPARISON OF DIFFERENT METHODS REGARDING THE OBTAINED ERROR RATE (%) OF THREE DATASETS IN THE SEARCH SPACE OF NATS

as #Queries. Table III displays the comparison results of SP-
NAS against 12 modern NAS algorithms over NASBench-101.
Table III lists the mean test error ± standard deviation and the
ranking within NASBench-101 of the individual detected. This
search space contained 423,624 potential architectures. Note
that SPNAS detected the second best solution of the space, thus
outperforming all other search algorithms. Since the best ranking
was assessed on the validation test, the results on the test set did
not fully reflect this ranking. Nonetheless, SPNAS achieved a
good performance in terms of test error as well.

To further illustrate the effectiveness of the proposed SPNAS,
experiments on NASBench-201 and the search space were con-
ducted, as displayed in Table IV. In this search space, the network
was trained on CIFAR-10, CIFAR-100 and ImageNet-16-120.
In this search space, SPNAS was able to search on the three
benchmark datasets to consistently find the best architecture on
both the validation and test sets.

The proposed algorithm achieved excellent results in the
NATS space as well, as shown in Table V, identifying the

best architectures for CIFAR-100 and ImageNet-16-20 and the
second best for CIFAR-10.

D. Transfer to MobileNetV3 With Once-for-All

To further evaluate the effectiveness of the proposed SP-
NAS framework on practical NAS problems, we extended our
experiments to the MobileNetV3 search space. The details of
the search process for MobileNetV3, previously described, are
not reiterated here. In our experiments, we explored various
aspects of the MobileNetV3 architecture, including image in-
put size, convolution kernel size, expansion ratio and block
depth. Unlike prior experiments that utilised benchmark results
from EvoXBench, this phase involved a direct evaluation of
the constructed MobileNetV3 networks. Specifically, we trained
(fine-tuned) these networks on a validation dataset to determine
their error rates. To optimise evaluation efficiency, we employed
pre-trained supernet weights from the Once-for-All framework.
Using these weights, we fine-tuned the networks for five epochs
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TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CIFAR-10

DATASET

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CIFAR-100

DATASET

on the CIFAR datasets. For the ImageNet dataset, we leveraged
the high performance of Once-for-All by directly applying the
pre-trained weights for validation set classification. The hy-
perparameters used in this phase were consistent with those
specified in Section IV-A. The results of these experiments are
summarised in Tables VI, VII and VIII. As shown, SPNAS
significantly improves classification accuracy for networks in
the MobileNetV3 space. Additionally, SPNAS demonstrates a
notable advantage in search time on ImageNet compared to other
evolutionary algorithms.

E. Analysis and Ablation Study for the Score Predictor

To better understand the functioning of SPNAS, the following
experimental study was designed: only random sampling was

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE IMAGENET

DATASET

TABLE IX
KENDALL’S TAU (KTau) CORRELATION INDEX BETWEEN THE

GROUND-TRUTH AND SURROGATE RANKING AND THE NUMBER OF QUERIES IN

EXPLORED SEARCH SPACE TO TRAIN THE SURROGATE MODELS ON THE

NASBENCH-101 DATASET

TABLE X
KENDALL’S TAU (KTau) CORRELATION COEFFICIENT BETWEEN THE

GROUND-TRUTH AND SURROGATE RANKING FOR ABLATION EXPERIMENTS ON

ONE-HOT ENCODING

used to obtain some of the data from the benchmark dataset for
training, and 5,000 non-utilised data points were sampled for
validation. Using the same mechanism utilised for the score pre-
diction during search, for the training process, only the validation
dataset was used. In this scenario, for NASBench-101, Kendall’s
Tau (KTau) correlation coefficient [84] was calculated between
the ranking achieved through the ground-truth calculation and
that achieved through surrogate for SPNAS and 10 competitor
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TABLE XI
KENDALL’S TAU (KTau) CORRELATION INDEX BETWEEN THE GROUND-TRUTH AND SURROGATE RANKING FOR DIFFERENT LOSS FUNCTIONS AND THE NUMBER

OF TRAINING DATA (#QUERIES) AND THE PERCENTAGE ON NASBENCH-101 BENCHMARK

Fig. 3. Scatterplot of the predicted ranking (x-axis) vs the actual ranking based on the error rate (y-axis). The closer the predicted point is to the red line, the
closer the predicted ranking is to the true ranking. Here, 5,000 points randomly chosen from a run were plotted.

algorithms for a surrogate-assisted NAS. All experiments in this
section were conducted for five runs, and we have reported the
mean and standard deviation in the table. Table IX displays the
KTau values in the scenarios considered and the number of
queries of search space explored to build the surrogate.

To evaluate the effectiveness of one-hot encoding, we con-
ducted the following ablation study, detailed in Table X. In this
study, we used MLPs of the same size to train with both one-hot
encoding and standard encoding. The proposed loss function,
as described in (5), was employed to train the models, and
we then obtained scores from different experiments. Table X
presents the KTau correlation coefficient between the rankings
of these scores and the ground truth validation/test rankings.
The results indicate that one-hot encoding significantly affects
NASBench-201, as ordinal encoding introduces incorrect mag-
nitude relations that are unnecessary for representing the type of
operation. For the NATS search space, one-hot encoding remains
effective. This is because ordinal encoding in NATS represents
the number of channels and involves a proportional magnitude
relation. This ablation study underscores the importance of using
one-hot encoding in our experiments.

The impact of the amount of data and the loss function used for
surrogate model training on the prediction performance was also
explored. The corresponding results are listed in Table XI. The
experiments were conducted using the MSE and L1 alone, and
the corresponding coefficient KTau was calculated. Scrolling
the columns, it was observed that the proposed loss function
yielded higherKTau values in all scenarios. Scrolling the rows,
it was observed that an increase in Per corresponded to an
increase in performance index KTau. As shown in Table XI,
our surrogate model achieves good prediction accuracy with
only 0.05% of the data. However, a significant improvement
(close to 8%) is observed by doubling the data, so we prefer
to use 0.1%. Moving to 1% of the data, representing a tenfold
increase, results in only an 11% improvement, indicating that
this setting may not be the best trade-off between accuracy
and cost. Re-evaluating with 10% of the training data further
validates that the surrogate model’s accuracy can be enhanced,
suggesting that the prediction accuracy does not plateau between
using 0.1% and 1%. While there might be a better inflection
point between 0.1% and 1%, for the sake of convenience, we
have chosen 0.1%.
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Fig. 4. Ranking landscape analysis of NASBench-101, NASBench-201 and
NATS with t-distributed stochastic neighbour embedding. The first and second
columns display the ranking calculated in the validation and testing via using
the actual error rate, while the third column displays the ranking data obtained
using the SPNAS score predictor.

To further highlight the significance of the data in Table IX, a
graphical representation of the prediction results of the models
trained on seven benchmark datasets is provided in Fig. 3. What
we can see in Fig. 3 is that the score predictor is able to obtain
very good prediction accuracy on all 7 datasets. It is worth
mentioning that the points on NATS are very close to the red
line and all of them obtain a KTau of more than 0.85. The
KTau of the validation set accuracy and the test set accuracy
obtained by directly training the neural networks in NATS on
the three image datasets are 0.8349, 0.9009, and 0.8757. This
indicates that the use of our proposed score predictor has been
able to completely replace the original training process.

Furthermore, Fig. 4 displays the prediction ability of the
proposed score predictor. Here, t-distributed stochastic neigh-
bour embedding [85] was used to reduce the dimensions of the
search spaces of NASBench-101, NASBench-201 and NATS
and create scatterplots to obtain the ranking landscape of these
three benchmark spaces on CIFAR-10. In Fig. 4, the first column
represents the validation rankings of all neural networks on
CIFAR-10, the second column represents the test ranking of
all neural networks, and the third column represents the ranking
of all neural networks in terms of the scores obtained using the
score predictor. The diagrams in the third column (obtained by
the predictor) are similar to those in the other two columns (ob-
tained using the ground-truth fitness). This experiment visually
confirmed that the score predictor in SPNAS is reliable and well
predicts the ranking based on the actual error rate.

F. Ablation Study on the Surrogate Logic

To demonstrate the viability of the proposed surrogate-
assisted logic, we have designed the following ablation study.

TABLE XII
ABLATION STUDY ON THE SURROGATE-ASSISTED LOGIC: THE ERROR RATE

AND RANKING (%) OF SPNAS SURROGATE UPDATE LOGIC ARE COMPARED

WITH FOUR SCENARIOS INSPIRED BY [68], [86]

On NASBench-101 (and thus CIFAR-10), we have designed
an algorithm containing all the elements of SPNAS but with a
different logic to train and update the surrogate model. More
specifically, by taking inspiration from [68], [86], the training
and use of the surrogate model are divided into three phases.
Initially, in the first phase, lasting only the first generation,
I individuals are sampled, and their ground-truth values are
obtained to perform an initial training of the surrogate model.
Subsequently, in the second phase, every α generations, the best
k individuals with the optimal surrogate values are selected to
update the surrogate model. The training dataset associated with
the surrogate update has a maximum size limit of L (i.e., the
total number of queries). If this limit is reached, no further real
evaluations are conducted, and in the third phase, the surrogate
model is no longer updated. It must be remarked that even though
the ground-truth values are determined in the first two phases to
update the surrogate model, all the selection operations within
the GA framework are conducted based on the values predicted
by the surrogate model.

By employing this three-phase structure we have created four
variants of the proposed SPNAS running in four scenarios. The
results of this ablation study are presented in Table XII. It is
evident that the best results inspired by the approach proposed
in [68], [86] are achieved for I = 100, k = 20 and α = 2.
However, in this case, numerical results show that our SPNAS
approach outperforms these results.

V. CONCLUSION

This paper proposed an ENAS method assisted by a surro-
gate scoring algorithm that allows for easy and computation-
ally cheap population ranking. The proposed ENAS framework
searches for the optimal architecture via employing a GA-like
search logic. In the early stages of the evolution, it uses the
ground-truth fitness function on a small population and collects
the data, which are then used to train an MLP network specifi-
cally designed to assign scores to the candidate architectures that
enable easy population ranking without the need for calculating
or estimating the error rate. In the following part of the search,
the proposed algorithm evolves a large population using only
the surrogate function.

The results of the experiments conducted on all seven search
spaces of the EvoXBench library illustrated that the proposed
algorithm can detect excellent solutions across the entire bench-
mark, thus displaying versatility. A comparison against a large
number of modern NAS algorithms showed that the algorithm
has excellent performance and achieved the best network design
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TABLE XIII
CORRELATION COEFFICIENT KTau BETWEEN THE TRUE FITNESS AND

PREDICTED VALUES FOR FOUR WELL-KNOWN TEST PROBLEMS, COMPARING

THE PROPOSED SP, A STANDARD RBF AND A MODERN SURROGATE ENSEMBLE

METHOD [87] THAT REPRESENTS THE STATE-OF-THE-ART SURROGATE

OPTIMISATION

in almost all cases considered. The experimental studies on the
score predictor’s functioning demonstrated that the proposed
surrogate ranked the population by reliably simulating the rank-
ing according to the ground-truth fitness.

Future work will further investigate search operators and
domain-specific constraint handling techniques to ensure that
offspring solutions are always meaningful architectures. An-
other direction of the future research will design the surrogate
model as a multi-objective optimisation problem where accu-
racy and computational cost will be simultaneously addressed.
Meanwhile, it would be beneficial to extend this approach to
more general and complex black-box optimisation problems,
including more objectives and dimensions. Furthermore, a more
general way to utilize surrogate models is to adjust the surrogate
model by selecting elite individuals for real evaluation based on
surrogate values during the search process. Therefore, it is highly
worthwhile to consider how to integrate the methods presented
in this paper with this more general approach. Furthermore,
few-shot learning approaches including e.g., transfer learning,
metric learning, and Siamese neural networks will be explored
to train the surrogate.

APPENDIX

To demonstrate the generalisability of the proposed score
predictor (SP), we applied it to four commonly used benchmark
problems — Griewank, Ackley, Rastrigin and Rosenbrock (cor-
responding to f2–f5 from [87]) — and conducted experiments
across multiple dimensions: 40, 80 and 120. In each of the
twelve scenarios, we trained the SP, the ensemble approach
proposed in the state-of-the-art surrogate method from Ensemble
Surrogate-based Coevolutionary Optimizer (ESCO) [87] and a
standard radial basis function (RBF). Specifically, we used 400
samples (true fitness evaluations) to build each surrogate model
and then used 5,000 predictions to assess the reliability of each
model’s ranking capability. Table XIII displays the correlation
coefficient KTau between the true and predicted rankings. The
results show that the score predictor offers a significant advan-
tage. However, it should be noted that as the dimensionality
increases, the advantage of the score predictor becomes less
pronounced.
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